Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
RNA interference (RNAi) has been widely utilized to investigate gene functions and has significant potential for control of pest insects. However, recent studies have revealed that the target insect species, dsRNA molecule length, target genes, and other experimental factors can affect the efficiency of RNAi mediated control, restricting the further development and application of this technology. Therefore, the aim of this study was to establish a deep learning model using bioinformatics to help researchers identify dsRNA fragments with the highest RNAi efficiency. In this study, we optimized an existing model, namely, dsRNAPredictor, by designing sub-models based on different sequence lengths. Accordingly, the data were divided into two groups: 130-399 bp and 400-616 bp long sequences. Then, one-hot encoding was employed to extract sequence information. The convolutional neural network framework comprising three convolutional layers, three average pooling layers, a flattened layer, and three dense layers was employed as the classifier. By adjusting the parameters, we established two sub-models for different sequence distributions. Using multiple independent test datasets and conducting hypothesis testing, we demonstrated that our model exhibits superior performance and strong robustness to dsRNAPredictor, respectively. Therefore, our model may help design dsRNAs with pre-screening potential and facilitate further research and applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymeth.2024.11.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!