Investigating the role of gut microbiota in hemorrhagic stroke: Evidence from causal analysis.

J Stroke Cerebrovasc Dis

Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. Electronic address:

Published: January 2025

Background: Hemorrhagic stroke is potentially fatal and debilitating. Previous studies have indicated a potential correlation between gut microbiota and hemorrhagic stroke.

Methods: We conducted a two-sample Mendelian randomization (MR) study to assess the potential causal effects of gut microbiota on hemorrhagic stroke, including nontraumatic intracranial hemorrhage (ntICH), intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH). The inverse variance weighted (IVW) method was employed as the primary MR evaluation approach. Complementary methods of MR‒Egger, simple mode, weighted mode, and weighted median were utilized for validation. Heterogeneity and pleiotropy were assessed using Cochran's Q and MR‒Egger intercept tests. MR-PRESSO and leave-one-out analyses were employed to identify instrumental outliers.

Results: The IVW estimates demonstrated significant causal associations between ntICH and taxa from two classes (Clostridia, Methanobacteria), one order (Methanobacteriales), two families (Clostridiales vadin BB60 group, Methanobacteriaceae), and two genera (Catenibacterium, unknown genus id. 1000000073) (P<0.05). Subgroup analyses revealed causal links between ICH and taxa from two classes (Clostridia, Methanobacteria), two orders (Methanobacteriales, Rhodospirillales), two families (Acidaminococcaceae, Methanobacteriaceae), and four genera (Butyricimonas, Catenibacterium, Lachnospiraceae UCG010, unknown genus id.2755) (P<0.05). Furthermore, for the SAH subgroup, we identified causal associations with taxa from one family (Rikenellaceae) and six genera (Alloprevotella, Enterorhabdus, Hungatella, Lachnoclostridium, Parabacteroides, Ruminococcus gauvreauii group) (P<0.05). These findings remained robust across all sensitivity tests.

Conclusions: Our findings provide support for the causal effects of specific gut microbial taxa on hemorrhagic stroke and identify promising targets for its prevention and therapy. Further research is warranted to validate these associations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2024.108131DOI Listing

Publication Analysis

Top Keywords

gut microbiota
12
microbiota hemorrhagic
12
hemorrhagic stroke
12
mode weighted
8
investigating role
4
role gut
4
hemorrhagic
4
stroke evidence
4
evidence causal
4
causal analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!