A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hydrothermal-mediated in-situ nitrogen doping to prepare biochar for enhancing oxygen reduction reactions in microbial fuel cells. | LitMetric

Nitrogen-doped carbon materials are deemed promising cathode catalysts for microbial fuel cells (MFCs). The challenge lies in reducing costs and enhancing the proportion of electrocatalytically active nitrogenous functional groups. This study proposes a hydrothermal-mediated in-situ doping method to produce nitrogen-doped biochar from aquatic plants. The nitrogen atoms are anchored in the carbon structure during hydrothermal treatment. Subsequent pyrolysis converts the hydrochar into a catalyst with highly catalytically active aromatic ring structure (HC-N+PY). The as-prepared HC-N+PY electrocatalyst demonstrates superior oxygen reduction reaction activity with half-wave potentials of 0.82 V. The MFC with HC-N+PY exhibits excellent performance, with a peak power density of 1444 mW/m. Theoretical calculations demonstrate that the synergistic effect of graphitic nitrogen and C-O groups at defect sites enhances O adsorption and protonation. This work highlights the potential of utilizing nitrogen-doped biochar derived from aquatic plants as an effective catalyst for enhancing the performance of microbial fuel cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.131789DOI Listing

Publication Analysis

Top Keywords

microbial fuel
12
fuel cells
12
hydrothermal-mediated in-situ
8
oxygen reduction
8
nitrogen-doped biochar
8
aquatic plants
8
in-situ nitrogen
4
nitrogen doping
4
doping prepare
4
prepare biochar
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!