Techno-economic and life-cycle analyses of dark fermentative hydrogen production integrated with anaerobic digestion from coffee-manufacturing wastewater under thermophilic and mesophilic conditions.

Bioresour Technol

School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea. Electronic address:

Published: January 2025

Techno-economic analysis and life cycle assessment of thermophilic dark fermentation (TDF) and mesophilic dark fermentation (MDF) integrated with anaerobic digestion (AD) from coffee-manufacturing wastewater (CW) as feedstock were studied. The pilot plants were based in Iran and designed to convert 800 m/day of CW into hydrogen. The hydrogen volume flow rate (m/h) under thermophilic conditions was 1.1 times higher than that under mesophilic conditions; however, the hydrogen mass flow rate (kg/h) was approximately equal in both conditions (1.04). The hydrogen production costs for the MDF-AD and TDF-AD plants were 3.86 and 3.84 USD/kg, respectively. A payback period of 1.3 and 1.33 years for the MDF-AD and TDF-AD plants were obtained, respectively. The Global warming potential from the entire system was 0.79 kg CO-eq/kg hydrogen for the DF-AD plants. The DF commercialization is supported by environmental advantages, despite its higher hydrogen cost than natural gas-based methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.131737DOI Listing

Publication Analysis

Top Keywords

hydrogen production
8
integrated anaerobic
8
anaerobic digestion
8
digestion coffee-manufacturing
8
coffee-manufacturing wastewater
8
mesophilic conditions
8
dark fermentation
8
flow rate
8
mdf-ad tdf-ad
8
tdf-ad plants
8

Similar Publications

Membrane-assisted direct seawater splitting (DSS) technologies are actively studied as a promising route to produce green hydrogen (H2), whereas the indispensable use of supporting electrolytes that help to extract water and provide electrochemically-accelerated reaction media results in a severe energy penalty, consuming up to 12.5% of energy input when using a typical KOH electrolyte. We bypass this issue by designing a zero-gap electrolyzer configuration based on the integration of cation exchange membrane and bipolar membrane assemblies, which protects stable DSS operation against the precipitates and corrosion in the absence of additional supporting electrolytes.

View Article and Find Full Text PDF

Electrochemical Reduction of CO to CHOH Catalyzed by an Iron Porphyrinoid.

J Am Chem Soc

January 2025

School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India.

Designing catalysts for the selective reduction of CO, resulting in products having commercial value, is an important area of contemporary research. Several molecular catalysts have been reported to facilitate the reduction of CO (both electrochemical and photochemical) to yield 2e/2H electron-reduced products, CO and HCOOH, and selective reduction of CO beyond 2e/2H is rare. This is partly because the factors that control the selectivity of CO reduction beyond 2e are not yet understood.

View Article and Find Full Text PDF

A Stable Solid-Electrolyte Interphase Constructed by a Nucleophilic Molecule Additive for the Zn Anode with High Utilization and Efficiency.

ACS Appl Mater Interfaces

January 2025

College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, Jiangsu 215006, China.

The solid-electrolyte interphase (SEI) strongly determines the stability and reversibility of aqueous Zn-ion batteries (AZIBs). In traditional electrolytes, the nonuniform SEI layer induced by severe parasitic reactions, such as the hydrogen evolution reaction (HER), will exacerbate the side reactions on Zn anodes, thus leading to low zinc utilization ratios (ZURs). Herein, we propose to use methoxy ethylamine (MOEA) as a nucleophilic additive, which has a stronger nucleophilic characteristic than water, with the advantage of an abundance of nucleophilic atoms.

View Article and Find Full Text PDF

Effect of catalase on CPC production during fermentation of Acremonium chrysogenum.

Bioresour Bioprocess

January 2025

Qingdao Innovation Institute of East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.

Cephalosporin C (CPC) is a critical raw material for cephalosporin antibiotics produced by Acremonium chrysogenum. During fermentation, the oxygen supply is a crucial factor limiting the efficient biosynthesis of CPC. This study demonstrated that the addition of exogenous surfactants significantly increased the dissolved oxygen (DO) level, extracellular catalase content, and final CPC titer.

View Article and Find Full Text PDF

Deciphering antioxidant interactions via data mining and RDKit.

Sci Rep

January 2025

Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA.

Minimizing the oxidation of lipids remains one of the most important challenges to extend the shelf-life of food products and reduce food waste. While most consumer products contain antioxidants, the most efficient strategy is to incorporate combinations of two or more compounds, boosting the total antioxidant capacity. Unfortunately, the reasons for observing synergistic / antagonistic / additive effects in food samples are still unclear, and it is common to observe very different responses even for similar mixtures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!