Most of the sequenced plastomes of photosynthetic angiosperms exhibit conservation in size, gene content, gene order, and GC content. In contrast, the sequenced plastomes of Cypripedium are distinguished by genome size expansion, AT-biased base composition, structural variation, and a low substitution rate. Additionally, the impact of sequencing methods is seldom addressed in prior studies, and the species represented in these studies are underrepresented. These atypical plastome features render the genus an ideal candidate for investigating plastome evolution. Besides, the backbone relationships within the genus remain poorly resolved. In this study, we sequenced twelve Cypripedium plastomes using three distinct sequencing strategies and obtained an additional 27 sequences from GenBank for comparative analysis. We classified the plastomes of the genus into two types: one resembling those of most other angiosperms, and the other characterized by inverted repeat (IR) expansion and small single copy (SSC) contraction. The plastomes within this genus exhibit significant size variations (∼72 kb), variations in GC content, and structural differences at the genus level. Furthermore, our comparative analysis revealed that the choice of sequencing strategy significantly impacts the assembly results. The uncovered regions in samples sequenced with short-read technology are predominantly AT-rich, suggesting that short-read sequencing may lead to assembly errors in plastomes with AT-rich regions and long repeats. Additionally, we have reconstructed the phylogeny of the genus using plastome-level data. However, the phylogenetic relationships within the genus remain partially solved. This study provides new insights into the evolution of plastomes, particularly those with AT-rich base compositions and genomes containing long repeat regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2024.149086 | DOI Listing |
PeerJ
December 2024
College of Life Sciences, Hengyang Normal University, Hengyang, Hunan, China.
is one of the two genera in the large fern family Aspleniaceae. A previous study explored the molecular phylogeny of this genus using several chloroplast DNA fragments and identified three major clades, one of which is the monophyletic Old World clade with southwestern China as its diversity center. To date, there were only a few studies conducted on chloroplast genomes in or Aspleniaceae, limiting the understanding of the plastome features and its role in evolution of this group.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
is a cosmopolitan aquatic plant genus that includes species with widespread global distributions. In previous studies, a revised molecular phylogeny was inferred using seven plastid loci from nine species across different geographic regions. By utilizing complete organellar genomes, we aim to provide a more comprehensive dataset that offers a robust phylogenetic signal for resolving species evolutionary relationships.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Biology, Colorado State University, Fort Collins, CO 80523.
Eukaryotic nuclear genomes often encode distinct sets of translation machinery for function in the cytosol vs. organelles (mitochondria and plastids). This raises questions about why multiple translation systems are maintained even though they are capable of comparable functions and whether they evolve differently depending on the compartment where they operate.
View Article and Find Full Text PDFMicrob Biotechnol
December 2024
State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
Chlamydomonas reinhardtii, a model green alga for expressing foreign proteins, faces challenges in multigene expression and enhancing protein expression level in the chloroplast. To address these challenges, we compared heterologous promoters, terminators and intercistronic expression elements (IEEs). We transformed Chlamydomonas chloroplast with a biolistic approach to introduce vectors containing the NanoLuc expression unit regulated by Chlamydomonas or tobacco promoters and terminators.
View Article and Find Full Text PDFACS Synth Biol
December 2024
Center for Agricultural Synthetic Biology (CASB), University of Tennessee, 2640 Morgan Circle Dr., Knoxville, Tennessee 37996, United States.
Plastids represent promising targets in plant genetic engineering for many biotech applications, ranging from their use as bioreactors for the overproduction of valuable molecules to the installation of transgenes for improving plant traits. For over 30 years, routine methods of plastid transformation have relied on homologous recombination integrating vectors. However, nonintegrating episomal plasmids have recently received more attention as an innovative tool for the plastid genetic engineering of plant cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!