Efficient lithium recovery from geothermal brines is crucial for the battery industry. Current electrochemical separation methods struggle with the simultaneous presence of Na, K, Mg, and Ca because these cations are similar to Li, making it challenging to separate effectively. We address these challenges with a three-chamber reactor featuring a polymer porous solid electrolyte in the middle layer. This design improves the transference number of Li (t) by 2.1 times compared to the two-chamber reactor and also reduces the chlorine evolution reaction, a common side reaction in electrochemical lithium extraction, to only 6.4% in Faradaic Efficiency. Employing a lithium-ion conductive glass ceramic (LICGC) membrane, the reactor achieved high t of 97.5% in LiOH production from simulated brine, while the concentrations of Na K, Mg, and Ca are below the detection limit. Electrochemical experiments and surface analysis elucidated the cation transport mechanism, highlighting the impact of Na on Li migration at the LICGC interface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601325 | PMC |
http://dx.doi.org/10.1073/pnas.2410033121 | DOI Listing |
Adv Sci (Weinh)
January 2025
Institute for Electrochemical Energy Storage (CE-IEES), Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.
Sn-based electrodes are promising candidates for next-generation lithium-ion batteries. However, it suffers from deleterious micro-structural deformation as it undergoes drastic volume changes upon lithium insertion and extraction. Progress in designing these materials is limited to complex structures.
View Article and Find Full Text PDFChem Asian J
January 2025
University of Queensland, School of Chemical Engineering, AUSTRALIA.
The activation mechanism of Li-rich cathode has been discussed for many years, yet there is still debate on different theories. Potassium doping can assist the investigation on activation mechanism through its unique function in terms of blocking TM migration during activation. K-doping works by occupying Li sites even after Li has been extracted, increasing stability by blocking transition metals from migrating into these sites, which can help us distinguish the pathway of activation.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China; College of Environment and Resources, Xiangtan University, Xiangtan, Hunan 411105, PR China. Electronic address:
A sustainable supply of lithium from salt-lake brines is necessary due to the surge in demand of the lithium-battery market. However, the presence of coexisting ions, particularly Na, poses a significant challenge due to the similarities in charge, electronic structure, and hydrated size. The electrochemical system with manganese (Mn)-based lithium-ion (Li) sieves electrodes is a promising method for Li recovery, but often suffers from geometric configuration distortion, which reduces their selectivity and capacity.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Power Battery & System Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Lithium-ion batteries are a key technology for addressing energy shortages and environmental pollution. Assessing their health is crucial for extending battery life. When estimating health status, it is often necessary to select a representative characteristic quantity known as a health indicator.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
University Regensburg, Institute of Analytical Chemistry, Universitätsstrasse 31, 93053, Regensburg, Germany. Electronic address:
Background: The demand for lithium-ion cells in the automotive industry is rapidly growing due to the increasing electrification of the transportation sector. The electrolyte composition plays a critical role in determining the lifetime and performance of these large-format cells. Additionally, advancements in this field are leading to frequent changes in both electrode materials and electrolyte formulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!