Acoustic imaging of geometrically shielded sound sources using tailored Green's functions.

J Acoust Soc Am

Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region of China.

Published: November 2024

In light of the growing market of urban air mobility, it is crucial to accurately detect the stationary or moving noise sources within the complex scattering environments caused by aircraft structures such as airframes and engines. This study combines conventional and wavelet-based beamforming techniques with an acoustic scattering prediction method to develop an acoustic imaging approach that considers scattering effects. Tailored Green's function is numerically evaluated and used to compute the steering vectors and the specific delayed time used in those beamforming methods. By examining common scenarios where a scatterer is positioned between the source plane and the array plane, it is observed that beamforming in a scattering environment differs from that in free space, leading to improved resolution alongside scattering-induced side lobes. The effectiveness of the developed method is validated through numerical simulations and experimental studies, confirming its improved ability to localize both stationary and rotating sound sources in a shielded environment. This advancement offers effective techniques for acoustic measurement and fault monitoring in the presence of structural scatterers.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0034353DOI Listing

Publication Analysis

Top Keywords

acoustic imaging
8
sound sources
8
tailored green's
8
techniques acoustic
8
acoustic
4
imaging geometrically
4
geometrically shielded
4
shielded sound
4
sources tailored
4
green's functions
4

Similar Publications

Gas bubbles, commonly used in medical ultrasound (US), witness advancements with nanobubbles (NB), providing improved capabilities over microbubbles (MB). NBs offer enhanced penetration into capillaries and the ability to extravasate into tumors following systemic injection, alongside prolonged circulation and persistent acoustic contrast. Low-frequency insonation (<1 MHz) with NBs holds great potential in inducing significant bioeffects, making the monitoring of their acoustic response critical to achieving therapeutic goals.

View Article and Find Full Text PDF

Review of advanced sensor system applications in grinding operations.

J Adv Res

January 2025

Department of Mechanics and Strength of Materials, Politehnica University Timisoara, 1 Mihai Viteazu Avenue, 300 222 Timisoara, Romania. Electronic address:

Background: Today, in a wide variety of industries, grinding operations are an extremely important finishing process for obtaining precise dimensions and meeting strict requirements for roughness and shape accuracy. However, the constant wear of abrasive tools during grinding negatively affects the dimensional and surface conditions of the workpiece. Therefore, effective monitoring of the wear process during grinding operations helps to predict tool life, plan maintenance and ensure consistent product quality.

View Article and Find Full Text PDF

In this paper, we demonstrate that torsional surface elastic waves can propagate along the curved surface of a metamaterial elastic rod (cylinder) embedded in a conventional elastic medium. The crucial parameter of the metamaterial rod is its elastic compliance s44(1)ω, which varies as a function of frequency ω analogously to the dielectric function εω in Drude's model of metals. As a consequence, the elastic compliance s44(1)ω can take negative values s44(1)ω<0 as a function of frequency ω.

View Article and Find Full Text PDF

Background: Vestibular schwannoma (VS) is a common intracranial tumor that affects patients' quality of life. Reliable imaging techniques for tumor volume assessment are essential for guiding management decisions. The study aimed to compare the ABC/2 method to the gold standard planimetry method for volumetric assessment of VS.

View Article and Find Full Text PDF

Three-dimensional multicellular aggregates (MCAs) like organoids and spheroids have become essential tools to study the biological mechanisms involved in the progression of diseases. In cancer research, they are now widely used as in vitro models for drug testing. However, their analysis still relies on tedious manual procedures, which hinders their routine use in large-scale biological assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!