Addressing the impact of near-field effects in the Controlled Source Electromagnetic Method(CSEM) has long been a focal point in the realm of geophysical exploration. Therefore, we propose a deep learning-based near-field correction method for controlled-source electromagnetic methods. Initially, diverse datasets for a layered geologic model are generated through forward simulation. Building upon the characteristics of near-field effects, a deep learning network utilizing LSTM-CNN is meticulously constructed. Multiple experiments are executed to scrutinize the network's effectiveness in mitigating near-field effects and its resilience against noise. Following this, the proposed method is applied to actual CSEM data to validate its applicability in practice. The method is subsequently tested on measured CSEM data, confirming its practical efficacy. Results from experiments indicate that, for theoretical data, the LSTM-CNN network-trained data closely aligns with simulated data, showcasing a significant improvement. Moreover, when applied to measured data, the method eradicates false high-resistance anomalies at lower frequencies. In conclusion, this deep learning-based correction method proficiently eliminates the influence of near-field effects in the CSEM, delivering practical application benefits that more accurately reflect the authentic geologic structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554044 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0308875 | PLOS |
Sci Rep
January 2025
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Nanoscale Fourier transform infrared (Nano-FTIR) imaging and spectroscopy correlated with photoluminescence measurements of lunar Apollo samples with different surface radiation exposure histories reveal distinct physical and chemical differences associated with space weathering effects. Analysis of two sample fragments: an ilmenite basalt (12016) and an impact melt breccia (15445) show evidence of intrinsic or delivered Nd and an amorphous silica glass component on exterior surfaces, whereas intrinsic Cr and/or trapped electron states are limited to interior surfaces. Spatially localized 1050 cm/935 cm band ratios in Nano-FTIR hyperspectral maps may further reflect impact-induced shock nanostructures, while shifts in silicate band positions indicate accumulated radiation damage at the nanoscale from prolonged space weathering due to micrometeorites, solar wind, energetic x-rays and cosmic ray bombardment.
View Article and Find Full Text PDFSci Rep
December 2024
School of Computer Science Engineering and Information Systems , Vellore Institute of Technology, Vellore, India.
Our day-to-day lives have become comfortable and sophisticated with many recent technologies. Likewise, today's world has been enhanced by new innovative technologies. Everyone is moving towards smart cities and smart homes.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom; Material and Advanced Technologies for Healthcare, Queen's University of Belfast, 18-30 Malone Road, Belfast BT9 5DL, United Kingdom. Electronic address:
Microplastics (MPs) and Nanoplastics (NPs), a burgeoning health hazard, often go unnoticed due to suboptimal analytical tools, making their way inside our bodies through various means. Surface Enhanced Raman Spectroscopy (SERS), although is utilized in detecting NPs, challenges arise at low concentrations due to their low Raman cross section and inability to situate within hotspots owing to their ubiquitous size and shape. This study presents an innovative and cost-effective approach employing household metallic foils (aluminium and copper) as nanoparticle-on-film (NPoF) substrates for targeting such analytes.
View Article and Find Full Text PDFSci Rep
December 2024
Research Center of Space Structures, Guizhou University, Guiyang, 550025, China.
This study employed numerical simulation to investigate the dynamic response characteristics of open-web girders subjected to proximity blast loading and to compare these characteristics with those of solid-web girders. The research utilized the Coupled Eulerian-Lagrangian (CEL) method for simulation, effectively combining the advantages of both Eulerian and Lagrangian approaches. This method mitigated issues related to mesh distortion while accurately modeling the damage inflicted by blast loads on the structures.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan.
Biosensors operating in the terahertz (THz) region are gaining substantial interest in biomedical analysis due to their significant potential for high-sensitivity trace-amount solution detection. However, progress in compact, high-sensitivity chips and methods for simple, rapid and trace-level measurements is limited by the spatial resolution of THz waves and their strong absorption in polar solvents. In this work, a compact nonlinear optical crystal (NLOC)-based reflective THz biosensor with a few arrays of asymmetrical meta-atoms was developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!