In the course of their life, plants continuously experience a wide range of unfavourable environmental conditions in the form of biotic and abiotic stress factors. The perception of stress via various organelles and rapid, tailored cellular responses are essential for the establishment of plant stress resilience. Mitochondria as the biosynthetic sites of energy equivalents in the form of ATP-provided in order to enable a multitude of biological processes in the cell-are often directly impacted by external stress factors. At the same time, mitochondrial function may fluctuate to a tolerable extent without the need to activate downstream retrograde signalling cascades for stress adaptation. In this Focus Review, we summarise the current state of knowledge on the perception and processing of stress signals by mitochondria and show which layers of retrograde signalling, that is, those involving transcription factors, metabolites, but also enzymes with moonlighting functions, enable communication with the nucleus. Also, light is shed on signal integration between mitochondria and chloroplasts as part of retrograde signalling. With this Focus Review, we aim to show ways in which organelle-specific communication can be further researched and the collected data used in the long-term to strengthen plant resilience in the context of climate change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658195 | PMC |
http://dx.doi.org/10.1111/tpj.17133 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.
View Article and Find Full Text PDFJ Korean Neurosurg Soc
January 2025
Department of Neurosurgery, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Korea.
Objective: The leptomeningeal ivy sign is a distinctive finding of moyamoya disease (MMD), characterized by a linear high signal intensity along the cortical sulci on contrast-enhanced T1 magnetic resonance imaging (MRI) and fluid-attenuated inversion-recovery MRI. We recently identified a similar linear enhancement along the cortical sulci using gadolinium-enhanced vessel wall MRI (VWMR) in patients with MMD. The aim of this study was to introduce the concept of the "VWMR ivy sign (VIS)".
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
Chronic kidney disease (CKD) is a conceivable new risk factor for cognitive disorder and dementia. Uremic toxicity, oxidative stress, and peripheral-central inflammation have been considered important mediators of CKD-induced nervous disorders. Nitric oxide (NO) is a retrograde neurotransmitter in synapses, and has vital roles in intracellular signaling in neurons.
View Article and Find Full Text PDFJ Orthop Trauma
January 2025
Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN.
Objective: To evaluate mechanical failure rates of retrograde femoral nails in the treatment of distal femur fractures.
Methods: Design: Retrospective chart review.
Setting: Urban Academic Level 1 Trauma Center.
Proc Natl Acad Sci U S A
January 2025
Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile.
BK channels can control neuronal function, but their functional relevance in activity-dependent changes of synaptic function remains elusive. Here, we report that repetitive low-frequency stimulation activates BK channels through 12(S)HPETE, an arachidonic acid metabolite, produced downstream of postsynaptic metabotropic glutamate receptors (mGluRs) to trigger long-term depression (LTD) at CA3-CA1 synapses in hippocampal slices from P7-P10 mice. Activation of BK channels is subunit specific, as paxilline but not iberiotoxin blocked mGluR-LTD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!