The pathological activation of cardiac fibroblasts (CFs) plays a crucial role in the development of pressure overload-induced cardiac remodelling and subsequent heart failure (HF). Growing evidence demonstrates that multiple microRNAs (miRNAs) are abnormally expressed in the pathophysiologic process of cardiovascular diseases, with miR-425 recently reported to be potentially involved in HF. In this study, we aimed to investigate the effects of fibroblast-derived miR-425-5p in pressure overload-induced HF and explore the underlying mechanisms. C57BL/6 mice were injected with a recombinant adeno-associated virus specifically designed to overexpress miR-425-5p in CFs, followed by transverse aortic constriction (TAC) surgery. Neonatal mouse CFs (NMCFs) were transfected with miR-425-5p mimics and subsequently stimulated with angiotensin II (Ang II). We found that miR-425-5p levels were significantly downregulated in HF mice and Ang II-treated NMCFs. Notably, fibroblast-specific overexpression of miR-425-5p markedly inhibited the proliferation and differentiation of CFs, thereby alleviating myocardial fibrosis, cardiac hypertrophy and systolic dysfunction. Mechanistically, the cardioprotective actions of miR-425-5p may be achieved by targeting the TGF-β1/Smad signalling. Interestingly, miR-425-5p mimics-treated CFs could also indirectly affect cardiomyocyte hypertrophy in this course. Together, our findings suggest that fibroblast-derived miR-425-5p mitigates TAC-induced HF, highlighting miR-425-5p as a potential diagnostic and therapeutic target for treating HF patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552651PMC
http://dx.doi.org/10.1111/jcmm.70199DOI Listing

Publication Analysis

Top Keywords

fibroblast-derived mir-425-5p
12
mir-425-5p
9
cardiac remodelling
8
heart failure
8
tgf-β1/smad signalling
8
pressure overload-induced
8
cfs
5
mir-425-5p alleviates
4
cardiac
4
alleviates cardiac
4

Similar Publications

The pathological activation of cardiac fibroblasts (CFs) plays a crucial role in the development of pressure overload-induced cardiac remodelling and subsequent heart failure (HF). Growing evidence demonstrates that multiple microRNAs (miRNAs) are abnormally expressed in the pathophysiologic process of cardiovascular diseases, with miR-425 recently reported to be potentially involved in HF. In this study, we aimed to investigate the effects of fibroblast-derived miR-425-5p in pressure overload-induced HF and explore the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!