Objective: Freezing of gait (FOG) in Parkinson's disease has a complex neurological mechanism. Compared with other modalities, electroencephalogram (EEG) can reflect FOG-related brain activity of both motor and non-motor symptoms. However, EEG-based FOG prediction methods often extract time, spatial, frequency, time-frequency, or phase information separately, which fragments the coupling among these heterogeneous features and cannot completely characterize the brain dynamics when FOG occurs.
Methods: In this study, dynamic spatiotemporal coherent modes of EEG were studied and used for FOG detection and prediction. A dynamic mode decomposition (DMD) method was first applied to extract the spatiotemporal coherent modes. Dynamic changes of the spatiotemporal modes, in both amplitude and phase of motor-related frequency bands, were evaluated with analytic common spatial patterns (ACSP) to extract the essential differences among normal, freezing, and transitional gaits.
Results: The proposed method was verified in practical clinical data. Results showed that, in the detection task, the DMD-ACSP achieved an accuracy of 86.4 ± 3.6% and a sensitivity of 83.5 ± 4.3%. In the prediction task, 86.5 ± 3.2% accuracy and 86.7 ± 7.8% sensitivity were achieved.
Conclusion: Comparative studies showed that the DMD-ACSP method significantly improves FOG detection and prediction performance. Moreover, the DMD-ACSP reveals the spatial patterns of dynamic brain functional connectivity, which best discriminate the different gaits.
Significance: The spatiotemporal coherent modes may provide a useful indication for personalized intervention and transcranial magnetic stimulation neuromodulation in medical practices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2024.3496074 | DOI Listing |
Nano Lett
January 2025
State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.
Optical computing, renowned for its light-speed processing and low power consumption, typically relies on the coherent control of two light sources. However, there are challenges in stabilizing and maintaining high optical spatiotemporal coherence, especially for large-scale computing systems. The coherence requires rigorous feedback circuits and numerous phase shifters, introducing system instability and complexity.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Cognitive Systems Lab, University of Bremen, 28359 Bremen, Germany.
Over recent years, automated Human Activity Recognition (HAR) has been an area of concern for many researchers due to its widespread application in surveillance systems, healthcare environments, and many more. This has led researchers to develop coherent and robust systems that efficiently perform HAR. Although there have been many efficient systems developed to date, still, there are many issues to be addressed.
View Article and Find Full Text PDFCommun Chem
January 2025
Energy & Materials Transition, Netherlands Organization for Applied Scientific Research (TNO), Urmonderbaan 22, Geleen, 6167RD, The Netherlands.
Time-resolved coherent Raman spectroscopy (CRS) is a powerful non-linear optical technique for quantitative, in-situ analysis of chemically reacting flows, offering unparalleled accuracy and exceptional spatiotemporal resolution. Its application to large polyatomic molecules, crucial for understanding reaction dynamics, has thus far been limited by the complexity of their rotational-vibrational Raman spectra. Progress in developing comprehensive spectral codes for these molecules, a longstanding goal, has been hindered by prohibitively long computation times required for their spectral synthesis.
View Article and Find Full Text PDFChaos
January 2025
Department of Physics, Tohoku University, Sendai 980-8578, Japan.
An Ott-Antonsen reduced M-population of Kuramoto-Sakaguchi oscillators is investigated, focusing on the influence of the phase-lag parameter α on the collective dynamics. For oscillator populations coupled on a ring, we obtained a wide variety of spatiotemporal patterns, including coherent states, traveling waves, partially synchronized states, modulated states, and incoherent states. Back-and-forth transitions between these states are found, which suggest metastability.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany.
Covalent organic frameworks (COFs), crystalline and porous conjugated structures, are of great interest for sustainable energy applications. Organic building blocks in COFs with suitable electronic properties can feature strong optical absorption, whereas the extended crystalline network can establish a band structure enabling long-range coherent transport. This peculiar combination of both molecular and solid-state materials properties makes COFs an interesting platform to study and ultimately utilize photoexcited charge carrier diffusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!