The study aimed to explore the potential of QiangJin mixture (QJM), a Chinese herbal compound prescription, in regulating MC3T3-E1 cell differentiation and to analyze the ingredients and therapeutic targets of QJM against osteoporosis based on network pharmacology. MC3T3-E1 cells were incubated with different concentrations of QJM-contained rat serum (5, 10, or 20%). After 14 days of cell culture, Alizarin Red staining was performed to assess the mineralization ability of osteoblasts. RT-qPCR was used to measure mRNA levels of osteogenesis-related genes. Western blot was conducted to measure protein levels of factors related to the BMP2/Smads pathway. Functional and pathway enrichment of overlapping targets for QJM and osteoporosis were analyzed using gene ontology and KEGG analyses. As shown by experimental results, QJM-contained serum led to calcium deposition, increased expression levels of osteogenesis-related genes, and activated BMP2/Smad/Runx2 signaling in MC3T3-E1 cells. A total of 125 active compounds and 162 disease-related targets were identified. The core targets were MAPK8, TP53, ESR1, STAT3, MAPK3, IL6, NFKB1, JUN, MAPK1 and AKT1. In conclusion, QJM promotes the osteogenic differentiation of MC3T3-E1 cells by activating the BMP2/Smads signaling. Additionally, QJM is an anti-osteoporotic mixture by regulating diverse therapeutic targets and signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12033-024-01313-4DOI Listing

Publication Analysis

Top Keywords

mc3t3-e1 cells
16
promotes osteogenic
8
osteogenic differentiation
8
differentiation mc3t3-e1
8
bmp2/smads pathway
8
network pharmacology
8
therapeutic targets
8
targets qjm
8
qjm osteoporosis
8
levels osteogenesis-related
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!