Background: Recurrent gliomas rapidly progress and have high mortality and poor prognosis in the central nervous system. Therefore, further investigation of prognostic and therapeutic markers is needed.
Methods: The mRNA expression, clinical data, and coagulation-related genes (CRGs) associated with recurrent glioma were obtained and calculated from the Chinese Glioma Genome Atlas and Kyoto Encyclopedia of Genes and Genomes databases. The significant CRGs were calculated by Weighted gene co-expression network analysis and PPI network. A prediction model was constructed using the least absolute shrinkage and selection operator regression analysis. Recurrent gliomas were stratified into high and low-risk groups based on the median risk score (RS). The Kaplan-Meier curve was used to analyze the difference in overall survival (OS) between these groups, while the receiver operating characteristic (ROC) curve was used to evaluate the accuracy of the gene model at 1-, 3-, and 5-years. Clinical factors, including age, gender, MGMT methylation status, radiotherapy, chemotherapy, and RS, were included in the univariate and multivariate regression analysis. A prognostic nomogram and calibration curve were established based on these factors.
Results: Overall, seven CRGs associated with the prognosis were identified, including BTK, ITGB1, GNAI3, CFH, LYN, CFI, and F3. OS and survival rates were lower in the high-risk group compared with the low-risk group. The ROC curve demonstrated the area under the curve values >0.65 at 1-, 3-, and 5-years, confirming the reliability of the prognostic model. The univariate regression analysis indicated that tumor grade (grades 2, 3, and 4), histopathology (GBM or not), chemotherapy, IDH mutation, and 1p19q co-deletion status were independent prognostic indicators. Univariate and multivariate regression analyses indicated that RS was an independent prognostic factor for patients with recurrent glioma. Immune analysis revealed low infiltration of resting dendritic cells and high expression of programmed death receptor 1 in the high-risk group.
Conclusion: This study comprehensively investigated the correlation between CRGs and recurrent glioma prognosis, offering crucial insights for further research into glioma recurrence mechanisms and treatment strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555177 | PMC |
http://dx.doi.org/10.1007/s12672-024-01520-0 | DOI Listing |
Neurooncol Pract
February 2025
Institute of Neuroscience and Physiology, Section of Clinical Neuroscience, Sahlgrenska Academy, Gothenburg, Sweden.
Isocitrate dehydrogenase (IDH)-mutant gliomas, comprising both astrocytomas and oligodendrogliomas, represent a distinct group of tumors that pose an interdisciplinary challenge. Addressing the needs of affected patients requires close collaboration among various disciplines, including neuropathology, neuroradiology, neurosurgery, radiation oncology, neurology, medical oncology, and other relevant specialties when necessary. Interdisciplinary tumor boards are central in determining the ideal diagnostic and therapeutic strategies for these patients.
View Article and Find Full Text PDFNat Med
January 2025
Seattle Children's Therapeutics, Seattle, WA, USA.
Diffuse intrinsic pontine glioma (DIPG) is a fatal central nervous system (CNS) tumor that confers a median survival of 11 months. As B7-H3 is expressed on pediatric CNS tumors, we conducted BrainChild-03, a single-center, dose-escalation phase 1 clinical trial of repetitive intracerebroventricular (ICV) dosing of B7-H3-targeting chimeric antigen receptor T cells (B7-H3 CAR T cells) for children with recurrent or refractory CNS tumors and DIPG. Here we report results from Arm C, restricted to patients with DIPG.
View Article and Find Full Text PDFNat Commun
January 2025
The Intellectual and Developmental Disabilities Research Center, The Semel Institute for Neuroscience and Human Behavior, and The Broad Stem Cell Research Center, The Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
Extensive neovascularization is a hallmark of glioblastoma (GBM). In addition to supplying oxygen and nutrients, vascular endothelial cells provide trophic support to GBM cells via paracrine signaling. Here we report that Endocan (ESM1), an endothelial-secreted proteoglycan, confers enhanced proliferative, migratory, and angiogenic properties to GBM cells and regulates their spatial identity.
View Article and Find Full Text PDFMolecules
December 2024
IRCCS Istituto Neurologico Mediterraneo NEUROMED, Via Atinense 18, 86077 Pozzilli, Italy.
Glioblastoma (GBM) is the most common and aggressive form of brain cancer in adults, characterized by extensive growth, a high recurrence rate, and resistance to treatment. Growing research interest is focusing on the biological roles of natural compounds due to their potential beneficial effects on health. Our research aimed to investigate the effects of lavender essential oil (LEO) on a GBM cell model.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
Odorant receptors (ORs), which constitute approximately 50% of all human G protein-coupled receptors, are increasingly recognized for their diverse roles beyond odor perception, including functions in various pathological conditions like brain diseases and cancers. However, the roles of ORs in glioblastoma (GBM), the most aggressive primary brain tumor with a median survival of only 15 months, remain largely unexplored. Here, we performed an integrated transcriptomic analysis combining The Cancer Genome Atlas RNA-seq and single-cell RNA sequencing data from GBM patients to uncover cell-type-specific roles of ORs within the tumor and its microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!