Epileptiform Electrographic Patterns After Cardiac Arrest: Give Up or Treat?

JAMA Neurol

Medical Intensive Care Unit, APHP Paris Centre, Cochin Hospital, University Paris Cité Medical School, Paris, France.

Published: November 2024

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamaneurol.2024.3831DOI Listing

Publication Analysis

Top Keywords

epileptiform electrographic
4
electrographic patterns
4
patterns cardiac
4
cardiac arrest
4
arrest treat?
4
epileptiform
1
patterns
1
cardiac
1
arrest
1
treat?
1

Similar Publications

Background And Objectives: Rolandic epilepsy (RE), the most common childhood focal epilepsy syndrome, is characterized by a transient period of sleep-activated epileptiform activity in the centrotemporal regions and variable cognitive deficits. Sleep spindles are prominent thalamocortical brain oscillations during sleep that have been mechanistically linked to sleep-dependent memory consolidation in animal models and healthy controls. Sleep spindles are decreased in RE and related sleep-activated epileptic encephalopathies.

View Article and Find Full Text PDF

Electrographic recording of brain activity through either surface electrodes (electroencephalography, EEG) or implanted electrodes (electrocorticography, ECOG) are valuable research tools in neuroscience across many disciplines, including epilepsy, sleep science and more. Research techniques to perform recordings in rodents are wide-ranging and often require custom parts that may not be readily available. Moreover, the information required to connect individual components is often limited and can therefore be challenging to implement.

View Article and Find Full Text PDF

Background: Local anesthetic systemic toxicity (LAST) is a rare but potentially life-threatening complication. Under general anesthesia, neurological signs are often masked, delaying diagnosis and increasing the risk of sudden cardiovascular collapse. Therefore, early detection methods are critically needed.

View Article and Find Full Text PDF

Objective: To describe electroencephalographic (EEG) changes in pediatric patients with cerebral edema after cardiac arrest.

Methods: A retrospective study of patients admitted to the pediatric intensive care unit from July 2021 to January 2023. We included patients with cardiac arrest and changes in EEG background with clinical changes and/or neuroimaging consistent with cerebral edema.

View Article and Find Full Text PDF

PTEN deletion in the adult dentate gyrus induces epilepsy.

Neurobiol Dis

December 2024

Reeve-Irvine Research Center, Gillespie Neuroscience Research Facility, 837 Health Sciences Road, University of California at Irvine, Irvine, CA 92697, USA; Department of Anatomy & Neurobiology, University of California at Irvine, Irvine, CA 92697, USA; Department of Neurobiology & Behavior, University of California at Irvine, Irvine, CA 92697, USA; Department of Neurosurgery, University of California at Irvine, Irvine, CA 92697, USA; Center for the Neurobiology of Learning and Memory, University of California at Irvine, Irvine, CA 92697, USA; University of California at Irvine School of Medicine, Irvine, CA, 92697, USA. Electronic address:

Embryonic and early postnatal promotor-driven deletion of the phosphatase and tensin homolog (PTEN) gene results in neuronal hypertrophy, hyperexcitable circuitry and development of spontaneous seizures in adulthood. We previously documented that focal, vector-mediated PTEN deletion in mature granule cells of the adult dentate gyrus triggers dramatic growth of cell bodies, dendrites, and axons, similar to that seen with early postnatal PTEN deletion. Here, we assess the functional consequences of focal, adult PTEN deletion, focusing on its pro-epileptogenic potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!