Increasing wildfire activity at high northern latitudes has the potential to mobilize large amounts of terrestrial mercury (Hg). However, understanding implications for Hg cycling and ecosystems is hindered by sparse research on peatland wildfire Hg emissions. In this study, we used measurements of soil organic carbon (SOC) and Hg, burn depth, and environmental indices derived from satellite remote sensing to develop machine learning models for predicting Hg emissions from major wildfires in the permafrost peatland of the Yukon-Kuskokwim Delta (YKD) in southwestern Alaska. Wildfire Hg emissions during summer 2015─estimated as the product of Hg:SOC (0.38 ± 0.17 ng Hg g C), predicted SOC stores (mean [5th-95th] = 9.1 [5.3-11.2] kg C m), and burn depth (11.3 [8.2-13.9] cm)─were 556 [164-1138] kg Hg or approximately 6% of Hg emissions from wildfire activity >60°N. Modeling estimates suggest that wildfire nearly doubled summertime Hg deposition within 10 km, despite advection of more than 75% of total emissions beyond Alaska. YKD areal emissions combined with remote sensing estimates of burned area suggest that wildfire Hg emissions from northern peatlands (25.4 [14.9-33.6] Mg y) are an important component of the northern Hg budget. Additional research is needed to refine these estimates and understand the implications for Arctic and global Hg cycling.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.4c08765DOI Listing

Publication Analysis

Top Keywords

wildfire emissions
12
permafrost peatland
8
southwestern alaska
8
wildfire activity
8
burn depth
8
remote sensing
8
emissions
7
wildfire
6
substantial mercury
4
mercury releases
4

Similar Publications

Contrasting Responses of Smoke Dispersion and Fire Emissions to Aerosol-Radiation Interaction during the Largest Australian Wildfires in 2019-2020.

Environ Sci Technol

January 2025

Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China.

The record-breaking 2019-2020 Australian wildfires have been primarily linked to climate change and its internal variability. However, the meteorological feedback mechanisms affecting smoke dispersion and wildfire emissions on a synoptic scale remain unclear. This study focused on the largest wildfires occurring between December 25, 2019 and January 10, 2020, under the enhanced subtropical high, when the double peak in wildfire evolution was favored by sustained low humidity and two synchronous increases in temperature and wind.

View Article and Find Full Text PDF

The light-absorbing chemical components of atmospheric organic aerosols are commonly referred to as Brown Carbon (BrC), reflecting the characteristic yellowish to brown appearance of aerosol. BrC is a highly complex mixture of organic compounds with diverse compositions and variable optical properties of its individual chromophores. BrC significantly influences the radiative budget of the climate and contributes to adverse air pollution effects such as reduced visibility and the presence of inhalable pollutants and irritants.

View Article and Find Full Text PDF

Understanding the causes of past atmospheric methane (CH) variability is important for characterizing the relationship between CH, global climate and terrestrial biogeochemical cycling. Ice core records of atmospheric CH contain rapid variations linked to abrupt climate changes of the last glacial period known as Dansgaard-Oeschger (DO) events and Heinrich events (HE). The drivers of these CH variations remain unknown but can be constrained with ice core measurements of the stable isotopic composition of atmospheric CH, which is sensitive to the strength of different isotopically distinguishable emission categories (microbial, pyrogenic and geologic).

View Article and Find Full Text PDF

In 2023, wildfires burned 15 million hectares in Canada, more than doubling the previous record. These wildfires caused a record number of evacuations, unprecedented air quality impacts across Canada and the northeastern United States, and substantial strain on fire management resources. Using climate models, we show that human-induced climate change significantly increased the likelihood of area burned at least as large as in 2023 across most of Canada, with more than two-fold increases in the east and southwest.

View Article and Find Full Text PDF

Air quality management benefits from an in-depth understanding of the emissions associated with, and composition of, local PM concentrations. Here, we investigate the changing role of biomass burning emissions to North American PM exposure by combining multiple satellite-, ground-, and simulation-based data sets biweekly at a 0.01° × 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!