Electronic textiles with remarkable breathability, lightweight, and comfort hold great potential in wearable technologies and smart human-machine interfaces. Ionic capacitive sensors, leveraging the advantages of the electric double layer, offer higher sensitivity compared to traditional capacitive sensors. Current research on wearable ion-capacitive sensors has focused mainly on two-dimensional (2D) or three-dimensional (3D) device architectures, which show substantial challenges for direct integration with textiles and compromise their wearing experience on conformability and permeability. One-dimensional (1D) stretchable fiber materials serve as vital components in constructing electronic textiles, allowing for rich structural design, patterning, and device integration through mature textile techniques. Here, a stretchable functional fiber with robust mechanical and electrical performances is fabricated based on semi-solid metal and ionic polymer, which provided a high stretchability and good electrical conductivity, enabling seamless integration with textiles. Consequently, high-performance stretchable fiber sensors are developed through different device architecture designs, including pressure sensors with high sensitivity (7.21 kPa), fast response (60 ms/30 ms), and excellent stability, as well as strain sensors with high sensitivity (GF = 1.05), wide detection range (0-300% strain), and excellent sensing stability under dynamic deformations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11714226 | PMC |
http://dx.doi.org/10.1002/advs.202412859 | DOI Listing |
J Colloid Interface Sci
January 2025
Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804 PR China. Electronic address:
Load bearing/energy storage integrated devices (LEIDs) featuring cementitious electrolytes have become ideal for large-scale energy storage. Nevertheless, the progression of LEIDs is still in its nascent phase and considerable endeavors concerning cementitious electrolytes and electrode materials are necessary to further boost the charge storage ability. Here, we propose a facile synchronous reaction method for preparing sodium acrylate (SA)-based in-situ polymerized cementitious electrolyte.
View Article and Find Full Text PDFGels
January 2025
Institute of Natural Sciences and Technosphere Safety, Sakhalin State University, Sakhalin Region, 693000 Yuzhno-Sakhalinsk, Sakhalin Oblast, Russia.
Composite adsorbents based on a natural biopolymer matrix of chitosan, to which 4-amino-N'-hydroxy-1,2,5-oxadiazole-3-carboximidamide and its Se derivative were attached, were synthesized. A complex of physicochemical analysis methods indicates that the direct introduction of a matrix with high ionic permeability into the reaction mixture contributes to the formation of homogeneous particles of composite with developed surface morphology, which enhances the kinetic and capacitive parameters of uranium sorption in liquid media. It has been established that the direct introduction of a matrix with high ionic permeability into the reaction mixture contributes to the formation of homogeneous particles with a developed surface morphology, which enhances the kinetic and capacitive parameters of uranium sorption in liquid media.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China.
High-performance flexible pressure sensors are crucial for applications such as wearable electronics, interactive systems, and healthcare technologies. Among these, iontronic pressure sensors have garnered particular attention due to their superior sensitivity, enabled by the giant capacitance variation of the electric double layer (EDL) at the ionic-electronic interface under deformation. Key advancements, such as incorporating microstructures into ionic layers and employing diverse materials, have significantly improved sensor properties like sensitivity, accuracy, stability, and response time.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Shanxi Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049 China. Electronic address:
The application of ionic liquid electrolytes in ultrafast supercapacitors to achieve wide electrochemical operating windows and high electrochemical stability is highly applauded. However, the strong Coulomb interaction between ions leads to the overscreening effect and slow establishment process of the electrical double layer (EDL), which deteriorates the rate performance of supercapacitors. Herein, inspired by Coulomb's law and EDL transient dynamics, we introduce competitive hydrogen bond interactions into typical ionic-liquid electrolytes to weaken the Coulomb interaction between ions.
View Article and Find Full Text PDFHeliyon
January 2025
Sharif Institute of Energy, Water and Environment, Sharif University of Technology, Azadi Avenue, P.O.Box11365-9465, Tehran, Iran.
Manganese dioxide (MnO) is a well-known pseudocapacitive material that has been extensively studied and highly regarded, especially in supercapacitors, due to its remarkable surface redox behavior, leading to a high specific capacitance. However, its full potential is impeded by inherent characteristics such as its low electrical conductivity, dense morphology, and hindered ionic diffusion, resulting in limited rate capability in supercapacitors. Addressing this issue often requires complicated strategies and procedures, such as designing sophisticated composite architectures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!