Unlabelled: Freshwater ecosystems can be largely affected by neighboring agriculture fields where potential fertilizer nitrate run-off may leach into surrounding water bodies. To counteract this eutrophic driver, farmers in certain areas are utilizing denitrifying woodchip bioreactors (WBRs) in which a consortium of microorganisms convert the nitrate into nitrogen gases in anoxia, fueled by the degradation of lignocellulose. Polysaccharide-degrading strategies have been well described for various aerobic and anaerobic systems, including the use of carbohydrate-active enzymes, utilization of lytic polysaccharide monooxygenases (LPMOs) and other redox enzymes, as well as the use of cellulosomes and polysaccharide utilization loci (PULs). However, for denitrifying microorganisms, the lignocellulose-degrading strategies remain largely unknown. Here, we have applied a combination of enrichment techniques, gas measurements, multi-omics approaches, and amplicon sequencing of fungal ITS and procaryotic 16S rRNA genes to identify microbial drivers for lignocellulose transformation in woodchip bioreactors and their active enzymes. Our findings highlight a microbial community enriched for (ligno)cellulose-degrading denitrifiers with key players from the taxa , , and UBA5070 (). A wide substrate specificity is observed among the many expressed carbohydrate-active enzymes (CAZymes) including PULs from Bacteroidetes. This suggests a broad degradation of lignocellulose subfractions, including enzymes with auxiliary activities whose functionality is still puzzling under strict anaerobic conditions.
Importance: Freshwater ecosystems face significant threats from agricultural runoff, which can lead to eutrophication and subsequent degradation of water quality. One solution to mitigate this issue is using denitrifying woodchip bioreactors (WBRs), where microorganisms convert nitrate into nitrogen gases utilizing lignocellulose as a carbon source. Despite the well-documented polysaccharide-degrading strategies in various systems, the mechanisms employed by denitrifying microorganisms in WBRs remain largely unexplored. This study fills a critical knowledge gap by revealing the degrading strategies of denitrifying microbial communities in WBRs. By integrating state-of-the-art techniques, we have identified key microbial drivers including , , , and UBA5070 () playing significant roles in lignocellulose transformation and showcasing a broad substrate specificity and complex metabolic capability. Our findings advance the understanding of microbial ecology in WBRs and by revealing the enzymatic activities, this research may inform efforts to improve water quality, protect aquatic ecosystems, and reduce greenhouse gas emissions from WBRs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1128/aem.01742-24 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653725 | PMC |
J Environ Qual
December 2024
USDA-ARS National Laboratory for Agriculture and the Environment, Ames, Iowa, USA.
Nutrient losses via subsurface tile cause environmental degradation of aquatic ecosystems. Various management practices are primarily aimed at reduction of nitrate leaching in tile discharge; however, studies on leaching of other nutrients are limited. A replicated plot experiment was initiated in 2016 as part of the Long-Term Agroecosystem Research (LTAR) network Croplands Common Experiment to quantify the effectiveness of management practices on leaching of NO-N, total P, K, and S from drained soils.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Department of Crop Sciences, University of Illinois at Urbana-Champaign, AW-101 Turner Hall, 1103 South Goodwin Avenue, Urbana, IL, USA. Electronic address:
Pumping surface water from a ditch into a denitrifying woodchip bioreactor could improve nitrate-nitrogen (N) removal by minimizing flow variabilities such as early flow cessation at a given subsurface drainage outlet and flashy drainage hydrographs. Few field-scale subsurface drainage bioreactors with pumping configurations have been assessed. Such evaluations would help better bound reasonable expectations of the benefits and drawbacks at these more advanced bioreactors.
View Article and Find Full Text PDFEnviron Technol
December 2024
Department of Agroecology, Aarhus University, Aarhus, Denmark.
Bioresour Technol
February 2025
Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, 439 Borlaug Hall, St. Paul, MN 55108, USA; BioTechnology Institute, University of Minnesota, 140 Gortner Lab, 1479 Gortner Ave., St. Paul, MN 55108, USA. Electronic address:
Woodchip bioreactor (WBR) is a promising technology for the removal of nitrate from agricultural drainage, although the performance of WBRs is dependent on the decomposition of lignocellulosic biomass and the carbon availability for microbial denitrification. Fungal species are more efficient than bacterial counterparts in driving wood decomposition; however, little is known about the fungal community structure and functions in saturated WBRs. In this study, we investigated the dynamics of the mycobiome in field-scale, constantly saturated WBRs located in Willmar, Minnesota, USA.
View Article and Find Full Text PDFSci Total Environ
December 2024
Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory for Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China. Electronic address:
Sulfur-based mixotrophic denitrification has significant potential as a promising denitrification technology for treating low ratio of carbon-to‑nitrogen (C/N) wastewater. This paper provided an in-depth and comprehensive overview of the sulfur-based mixotrophic denitrification process and discussed the underlying mechanisms and functional microorganisms. Possible electron transfer pathways involved in the sulfur-based mixotrophic denitrification process are also analyzed in detail.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!