A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The role of serum albumin in filamentation, germ tube formation, and farnesol sequestration. | LitMetric

is an opportunistic pathogen and colonizer of the human gut and mucosal membranes. exhibits morphological plasticity, which is crucial for its fitness within the host and virulence. Morphogenesis in is regulated, in part, by its production of farnesol, an autoregulatory molecule that inhibits filamentation. Morphogenesis is also regulated in response to external cues, such as serum, which stimulates hyphal formation by . The precise mechanism by which serum stimulates hyphal formation is unknown. The most abundant serum protein is albumin. The binding affinity of albumin for nonpolar, fatty-acid-like molecules suggests that it may interact directly with exogenous farnesol and influence morphogenesis through sequestration of free farnesol. To test this hypothesis, we assessed whether albumin and albumin devoid of fatty acids (i) stimulated farnesol secretion and (ii) influenced the farnesol threshold required to inhibit filamentation. We found that albumin promoted farnesol secretion and filamentation, and the extent of its ability to do so was based on the presence or absence of bound fatty acids. We hypothesize that albumin not bound to fatty acids has the capacity to bind to farnesol and sequester it from , encouraging filamentation.IMPORTANCEFor at least 50 years, researchers have wondered about the mechanisms by which serum stimulates germ tube formation (GTF) and hyphal growth in . Here, we tested a model (Nickerson et al., Microbiol Mol Biol Rev 88:e00081-22, 2024, https://doi.org/10.1128/mmbr.00081-22) that serum promotes GTF and farnesol synthesis in part by extracting internal farnesol (F) from the cells toward the excess binding capacity of the albumins. The data presented here suggests that albumin not bound by fatty acids sequesters free farnesol thereby modulating filamentation and farnesol secretion by altering the equilibrium of internal vs external farnesol. We expect that the influence of secreted farnesol on cell morphology will differ during pathogenesis depending on location within the body, but sequestration of farnesol in the blood could mediate immune cell recruitment and promote hyphal formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11654782PMC
http://dx.doi.org/10.1128/aem.01626-24DOI Listing

Publication Analysis

Top Keywords

fatty acids
16
farnesol
15
serum stimulates
12
hyphal formation
12
farnesol secretion
12
bound fatty
12
albumin
8
germ tube
8
tube formation
8
morphogenesis regulated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!