Climate and environment strongly influence the size, shape, and toothiness (physiognomy) of plants' leaves. These relationships, particularly in woody non-monocotyledonous angiosperms, have been used to develop leaf-based proxies for paleoclimate and paleoecology that have been applied to reconstruct ancient terrestrial ecosystems for the last ~120 million years of Earth's history. Additionally, given that these relationships have been documented in living plants, they are important for understanding aspects of plant evolution and how plants respond to climatic and environmental changes. To conduct these types of analyses on modern and fossil plants, leaf physiognomy must be measured accurately using a reproducible methodology. This protocol describes a computer-based method for measuring and analyzing a variety of leaf physiognomic variables in modern and fossil leaves. This method allows for the measurement of leaf physiognomic traits, in particular variables related to leaf serrations, leaf area, leaf dissection, and linearity that are used in the digital leaf physiognomy proxy for reconstructing paleoclimate, as well as petiole width and leaf area, which are used for reconstructing leaf mass per area, a paleoecological proxy. Because this digital leaf trait measurement method can be applied to fossil and living plants, it is not limited to applications related to reconstructing paleoclimate and paleoecology. It can also be used to explore leaf traits that may be informative for understanding the function of leaf morphology, leaf development, phylogenetic relationships of leaf traits, and plant evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/66838 | DOI Listing |
Sci Rep
December 2024
Institute for Forest Resources and Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China.
This study aims to explore the low phosphorus (P) tolerance of saplings from different Gleditsia sinensis Lam. families. It also seeks to screen for Gleditsia sinensis families with strong low P tolerance and identify key indicators for evaluating their tolerance.
View Article and Find Full Text PDFSci Rep
December 2024
College of Mechanical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, China.
The defoliation quality of mugwort defoliation equipment is an important factor to measure the defoliation efficiency, and the tensile properties of mugwort petiole will have an impact on the defoliation quality, such as the crushing rate and the abscission rate. In order to reduce the crushing rate and improve the abscission rate during mechanical harvesting of mugwort leaves, the tensile properties of mugwort petiole need to be studied. The tensile properties of mugwort petiole are closely related to its macroscopic and microscopic physicochemical parameters.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Natural Resources and the Environment, University of Connecticut, Storrs, CT, USA.
Converting natural vegetation to croplands alters the local land surface energy budget. Here, we use two decades of satellite data and a physics-based framework to analyse the biophysical mechanisms by which croplands influence daily mean land surface temperature (LST). Globally, 60% of croplands exhibit an annual warming effect, while 40% have a cooling effect compared to their surrounding natural ecosystems.
View Article and Find Full Text PDFNat Commun
December 2024
Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.
Compound soil drought and heat extremes are expected to occur more frequently with global warming, causing wide-ranging socio-ecological repercussions. Vegetation modulates air temperature and soil moisture through biophysical processes, thereby influencing the occurrence of such extremes. Global vegetation cover is broadly expected to increase under climate change, but it remains unclear whether vegetation greening will alleviate or aggravate future increases in compound soil drought-heat events.
View Article and Find Full Text PDFEnviron Technol
December 2024
Worley Consulting, Fort Collins, CO, USA.
Treatment wetlands have emerged as a potential remediation option for oil-sands process affected waters (OSPW) which contains a suite of organic and inorganic constituents of potential concern. The aim of this study was to evaluate the fate of metals in a treatment wetland exposed to OSPW. Data was collected over three operational seasons testing freshwater and OSPW inputs at the Kearl Treatment Wetland in northern Alberta.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!