Efficient retention of drugs at tumor sites was always desirable to maximize therapeutic functions, yet the main concern is the dynamic blood clearance induced fast removal from localized lesion. Herein, a tumor microenvironment activated covalently conjugation (self- and proximal conjugation) of tyramine modified Pt nanoclusters (PCMT NPs) was constructed by in situ produced radical hooks, leading to efficient accumulation of PCMT NPs at tumor sites. Such accumulation further aggravated the oxidative stress and provoked autophagy of tumor cells via activating the caspase-3 pathway mediated massive apoptosis, thereby stimulating immunogenic cell death (ICD). As verified by in vivo results, the PCMT NPs effectively suppressed primary and distant tumor growth (with an inhibition rate of 99%) while eliciting immunotherapeutic responses. As such, a new paradigm for boosting drug retention was provided, which enabled specific tumor treatment with synergistic therapeutic outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c03929DOI Listing

Publication Analysis

Top Keywords

pcmt nps
12
radical hooks
8
tumor sites
8
tumor
6
proximal anchoring
4
anchoring nanodrugs
4
nanodrugs situ
4
situ generated
4
generated radical
4
hooks boosted
4

Similar Publications

Efficient retention of drugs at tumor sites was always desirable to maximize therapeutic functions, yet the main concern is the dynamic blood clearance induced fast removal from localized lesion. Herein, a tumor microenvironment activated covalently conjugation (self- and proximal conjugation) of tyramine modified Pt nanoclusters (PCMT NPs) was constructed by in situ produced radical hooks, leading to efficient accumulation of PCMT NPs at tumor sites. Such accumulation further aggravated the oxidative stress and provoked autophagy of tumor cells via activating the caspase-3 pathway mediated massive apoptosis, thereby stimulating immunogenic cell death (ICD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!