Ammonia (NH₃) production is a critical industrial process, as ammonia is a key component in fertilizers, essential for global agriculture and food production. However, the current method of synthesizing ammonia, the Haber-Bosch process, is highly energy-intensive, and relies on fossil fuels, contributing substantially to greenhouse gas emissions. Moreover, the centralized nature of the Haber-Bosch process limits its accessibility in remote or resource-limited areas. Photochemical synthesis of ammonia, provides an alternate lower energy, carbon-free pathway compared to the prevailing industrial methods. The photoconversion of nitrate anions, often present in wastewater, offers a greener, more sustainable, and energy-efficient route for both ammonia-generation and wastewater treatment. Photochemical and chemical synthesis of ammonia requires intensive mass-transfer processes, which limits the efficiency of the method. To change the game, in this work, a key new technology of ammonia-generation, a catalytic ammonia generation (AmmoGen) microrobot, which converts nitrate to ammonia using renewable light energy is reported. The magnetic propulsion of the AmmoGen microrobots significantly enhances mass-transfer, and expedites the photosynthesis of ammonia. Overall, this "proof-of-concept" study demonstrates that microrobots can aid in catalytic small molecule activation and generation of value-added products; and are envisaged to pave the way toward new sustainable technologies for catalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202407050 | DOI Listing |
J Org Chem
January 2025
Laboratory of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan.
A one-pot, telescoped transformation of silyl ethers into cyanides that proceeds via silyl-ether oxidation mediated by nitroxyl-radical catalyst and [bis(trifluoroacetoxy)iodo]benzene followed by an imine formation-oxidation sequence using iodine and aqueous ammonia is reported. This transformation is effective for the site-selective transformation of benzylic and allylic silyl ethers in the presence of other silyl ethers. Using an -protected oxime and a catalytic amount of triflic acid instead of iodine/aqueous ammonia is also effective for cyanation.
View Article and Find Full Text PDFCureus
December 2024
Emergency and Critical Care Medicine, Iizuka City Hospital, Iizuka, JPN.
Urinary tract infections (UTIs) caused by urease-producing bacteria are known to cause hyperammonemia; however, non-urease-producing bacteria can also cause it. This report describes a case of an 87-year-old woman who developed hyperammonemia and impaired consciousness resulting from a UTI caused by the non-urease-producing bacterium, (). On admission, the patient presented with urinary retention, hyperammonemia (281 μg/dL), and alkaline urine (pH 8.
View Article and Find Full Text PDFCase Rep Gastrointest Med
January 2025
Department of Infectious Diseases, Maimonides Medical Center, Brooklyn, New York 11219, USA.
Typhoid fever is a multisystemic illness caused by and , transmitted fecal orally through contaminated water and food. It is a rare diagnosis in the US, with most cases reported in returning travelers. Hepatitis and cholestasis are rare sequelae of infection.
View Article and Find Full Text PDFWorld J Gastroenterol
January 2025
Department of Infectious Diseases, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, Fujian Province, China.
In this article, we provide commentary on the recent article by Zhao . We focus on the shifts in the gut microbiota of patients with hepatitis B virus (HBV)-associated cirrhosis/portal hypertension (PH) following transjugular intrahepatic portosystemic shunt (TIPS) and the implications for understanding the mechanisms, diagnosis, and treatment. By comparing the gut microbiota composition and dynamic changes before and after TIPS in patients with and without hepatic encephalopathy, the authors found an increase in non-probiotic bacteria in those who developed hepatic encephalopathy post-TIPS, with species present only in the hepatic encephalopathy group.
View Article and Find Full Text PDFACS Catal
January 2025
Chemical Biotechnology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, the Netherlands.
Aspartate ammonia lyases catalyze the reversible amination of fumarate to l-aspartate. Recent studies demonstrate that the thermostable enzyme from sp. YM55-1 (AspB) can be engineered for the enantioselective production of substituted β-amino acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!