Identification of heart rate dynamics during treadmill and cycle ergometer exercise: the role of model zeros and dead time.

F1000Res

rehaLab - the Laboratory for Rehabilitation Engineering ,Institute for Human Centred Engineering HuCE School of Engineering and Computer Science, Bern University of Applied Sciences,, Biel/Bienne, 2501, Switzerland.

Published: November 2024

AI Article Synopsis

  • The study investigates how heart rate responds to different exercise intensities and finds that second-order dynamic models better represent this response than first-order models.
  • Researchers reanalyzed data from 22 treadmill and 54 cycle ergometer sessions with 38 healthy participants, focusing on a model that includes both a zero and a dead time.
  • The best fitting model was a parallel connection of first-order transfer functions, which captured initial changes in heart rate and indicated that accurately preprocessing data is crucial to avoid bias in parameter estimates.

Article Abstract

Background: The response of heart rate to changes in exercise intensity is comprised of several dynamic modes with differing magnitudes and temporal characteristics. Investigations of empirical identification of dynamic models of heart rate showed that second-order models gave substantially and significantly better model fidelity compared to the first order case. In the present work, we aimed to reanalyse data from previous studies to more closely consider the effect of including a zero and a pure delay in the model.

Methods: This is a retrospective analysis of 22 treadmill (TM) and 54 cycle ergometer (CE) data sets from a total of 38 healthy participants. A linear, time-invariant plant model structure with up to two poles, a zero and a dead time is considered. Empirical estimation of the free parameters was performed using least-squares optimisation. The primary outcome measure is model fit, which is a normalised root-mean-square model error.

Results: A model comprising parallel connection of two first-order transfer functions, one with a dead time and one without, was found to give the highest fit (56.7 % for TM, 54.3 % for CE), whereby the non-delayed component appeared to merely capture initial transients in the data and the part with dead time likely represented the true dynamic response of heart rate to the excitation. In comparison, a simple first-order model without dead time gave substantially lower fit than the parallel model (50.2 % for TM, 47.9 % for CE).

Conclusions: This preliminary analysis points to a linear first-order system with dead time as being an appropriate model for heart rate response to exercise using treadmill and cycle ergometer modalities. In order to avoid biased estimates, it is vitally important that, prior to parameter estimation and validation, careful attention is paid to data preprocessing in order to eliminate transients and trends.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550391PMC
http://dx.doi.org/10.12688/f1000research.153397.2DOI Listing

Publication Analysis

Top Keywords

dead time
24
heart rate
20
treadmill cycle
12
cycle ergometer
12
model
9
response heart
8
dead
6
time
6
rate
5
identification heart
4

Similar Publications

Acute respiratory infections (ARIs) are a leading cause of death in children under five globally. The seasonal trends and profiles of respiratory viruses vary by region and season. Due to limited information and the population's vulnerability, we conducted the hospital-based surveillance of respiratory viruses in Eastern Uttar Pradesh.

View Article and Find Full Text PDF

Retinal Protection of New Nutraceutical Formulation.

Pharmaceutics

January 2025

Innovation and Medical Science, SIFI S.p.A., 95025 Aci Sant'Antonio, Italy.

Retinal ganglion cell (RGC) protection represents an unmet need in glaucoma. This study assessed the neuroprotective, antioxidant, and anti-inflammatory effect of a new nutraceutical formulation named Epicolin, based on citicoline, homotaurine, epigallocatechin-3-gallate, forskolin, and vitamins, through in vitro and in vivo studies. The neuroprotective effect of Epicolin or its single components, and Epicolin compared to an untreated control and two marketed formulations [Formulation G (FG) and N (FN)], was evaluated in neuroblastoma cells (SH-SY5Y) challenged with staurosporine.

View Article and Find Full Text PDF

In rice, leucine-rich repeat nucleotide-binding site (NLR) proteins are pivotal immune receptors in combating -triggered rice blast. However, the precise molecular mechanism underlying how NLR proteins regulate downstream signalling remains elusive due to the lack of knowledge regarding their direct downstream targets. The NLR protein Pigm-1 was cloned from Shuangkang 77009 in our laboratory.

View Article and Find Full Text PDF

Polyphenolic Hispolon Derived from Medicinal Mushrooms of the and Genera Promotes Wound Healing in Hyperglycemia-Induced Impairments.

Nutrients

January 2025

Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Yanpu Township 90741, Taiwan.

: This study investigated the wound-healing potential of hispolon, a polyphenolic pigment derived from medicinal mushrooms, under diabetic conditions using both in vitro and in vivo models. : In the in vitro assays, L929 fibroblast cells exposed to high glucose (33 mmol/L) were treated with hispolon at concentrations of 2.5, 5, 7.

View Article and Find Full Text PDF

: ACEIs protect against radiation pneumonitis by reducing angiotensin II production, oxidative stress, and inflammation. This study highlights the significance of concurrent angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) use in radiotherapy by evaluating its impact on radiotherapy-related side effects and survival outcomes, addressing the gap in existing research and providing insights to guide clinical practice in oncology. : The literature was retrieved from the MEDLINE, EMBASE, Web of Science, and Scopus databases from January 2000 to October 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!