A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting the microalgae lipid profile obtained by supercritical fluid extraction using a machine learning model. | LitMetric

Predicting the microalgae lipid profile obtained by supercritical fluid extraction using a machine learning model.

Front Chem

Grupo de Diseño de Productos Y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia.

Published: October 2024

In this study a Machine Learning model was employed to predict the lipid profile from supercritical fluid extraction (SFE) of microalgae sp. USBA-GBX-832 under different temperature (40, 50, 60°C), pressure (150, 250 bar), and ethanol flow (0.6, 0.9 mL min) conditions. Six machine learning regression models were trained using 33 independent variables: 29 from RD-Kit molecular descriptors, three from the extraction conditions, and the infinite dilution activity coefficient (IDAC). The lipidomic characterization analysis identified 139 features, annotating 89 lipids used as the entries of the model, primarily glycerophospholipids and glycerolipids. It was proposed a methodology for selecting the representative lipids from the lipidomic analysis using an unsupervised learning method, these results were compared with Tanimoto scores and IDAC calculations using COSMO-SAC-HB2 model. The models based on decision trees, particularly XGBoost, outperformed others (RMSE: 0.035, 0.095, 0.065 and coefficient of determination (R): 0.971, 0.933, 0.946 for train, test and experimental validation, respectively), accurately predicting lipid profiles for unseen conditions. Machine Learning methods provide a cost-effective way to optimize SFE conditions and are applicable to other biological samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543471PMC
http://dx.doi.org/10.3389/fchem.2024.1480887DOI Listing

Publication Analysis

Top Keywords

machine learning
16
lipid profile
8
profile supercritical
8
supercritical fluid
8
fluid extraction
8
learning model
8
conditions machine
8
learning
5
predicting microalgae
4
microalgae lipid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!