Background: This study evaluated the influence of various printing layer thicknesses with silicon dioxide nanoparticles (SiONPs) incorporated as a reinforcement material on the flexural strength of 3D-printed denture base resins.

Material And Methods: Asiga (DentaBASE, Asiga, Erfurt, Germany) and NextDent (Denture 3D+, NextDent B.V., Soesterberg, The Netherlands) 3D-printed resins were modified with different concentrations of SiONPs (0.25 % and 0.5 wt%). A total of 180 specimens (bar-shaped, 64 × 10 × 3.3 mm) were fabricated (N = 90/resin). Each resin was subdivided into three groups (n = 30) according to the SiONP concentration (0 %, 0.25 %, and 0.5 wt%) Each concentration was divided into three groups (n = 10) according to the printing layer thickness (50 µm, 75 µm, and 100 µm). Specimens were printed according to the manufacturer's instructions and then subjected to 10,000 thermal cycles. A three-point bending test was used to measure the flexural strength (MPa). One-way analysis of variance (ANOVA) and Tukey's post hoc tests were used to analyze the data (α = 0.05).

Results: For both resins, printing layer thicknesses of 50 µm and 75 µm exhibited significantly higher flexural strength than 100 µm (P < 0.001). The 50 µm thickness showed the greatest flexural strength values (81.65 ± 4.77 MPa and 84.59 ± 6.21 MPa for Asiga and NextDent, respectively). The 100 µm thickness showed the lowest flexural strength values (74.35 ± 5.37 and 73.66 ± 5.55 MPa) for Asiga and NextDent, respectively. The flexural strength significantly increased with the addition of SiONPs with printing layer thicknesses of 50 µm and 75 µm (P < 0.001), whereas the modified and unmodified groups printed with a 100 µm layer thickness did not differ significantly. Asiga 0.25 %/50 µm and NextDent 0.5 %/50 µm showed the highest flexural strength values (97.32 ± 6.82 MPa and 97.54 ± 7.04 MPa, respectively). Scanning electron microscopy fractured surfaces analysis revealed more lamellae and irregularities with lower printing layer thicknesses and SiONP concentrations.

Conclusion: The flexural strength increased with printing layer thicknesses of 50 µm or 75 µm combined with SiONP reinforcement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544193PMC
http://dx.doi.org/10.1016/j.sdentj.2024.07.009DOI Listing

Publication Analysis

Top Keywords

printing layer
16
flexural strength
16
layer thickness
8
layer thicknesses
8
025 % 05 wt%
8
three groups
8
50 µm 75 µm
8
impact printing
4
layer
4
flexural
4

Similar Publications

Background: The success of a restoration largely depends on the quality of its fit. This study aimed to investigate the fit quality of monolithic zirconia veneers (MZVs) produced through traditional and digital workflows.

Methods: A typodont maxillary right central incisor was prepared.

View Article and Find Full Text PDF

This study explores the impact of metallic shells by electroforming method on the mechanical behavior of thermoplastic polyurethane (TPU)-based lattice structures. First, the TPU lattice structures were printed by additive manufacturing technique. Then layers of Ni and Cu as a thin shell were dressed on the TPU lattice structures in the electroforming baths of Ni and Cu solutions.

View Article and Find Full Text PDF

A Highly Stable Electrochemical Sensor Based on a Metal-Organic Framework/Reduced Graphene Oxide Composite for Monitoring the Ammonium in Sweat.

Biosensors (Basel)

December 2024

Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China.

The demand for non-invasive, real-time health monitoring has driven advancements in wearable sensors for tracking biomarkers in sweat. Ammonium ions (NH) in sweat serve as indicators of metabolic function, muscle fatigue, and kidney health. Although current ion-selective all-solid-state printed sensors based on nanocomposites typically exhibit good sensitivity (~50 mV/log [NH]), low detection limits (LOD ranging from 10 to 10 M), and wide linearity ranges (from 10 to 10 M), few have reported the stability test results necessary for their integration into commercial products for future practical applications.

View Article and Find Full Text PDF

In order to identify carcinoembryonic antigen (CEA) in serum samples, an innovative smartphone-based, label-free electrochemical immunosensor was created without the need for additional labels or markers. This technology presents a viable method for on-site cancer diagnostics. The novel smartphone-integrated, label-free immunosensing platform was constructed by nanostructured materials that utilize the layer-by-layer (LBL) assembly technique, allowing for meticulous control over the interface.

View Article and Find Full Text PDF

Development of Thermosensitive Hydrogels with Tailor-Made Geometries to Modulate Cell Harvesting of Non-Flat Cell Cultures.

Gels

December 2024

Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain.

Considering the complexity in terms of design that characterizes the different tissues of the human body, it is necessary to study and develop more precise therapies. In this sense, this article presents the possibility of fabricating photocurable thermosensitive hydrogels with free geometry and based on N-Vinyl Caprolactam (VCL) with the aim of modulating the adhesion of non-planar cell cultures. The fabrication process is based on the use as a mold of two-layer thick water-soluble polyvinyl alcohol (PVA) previously printed by Extrusion Material (MatEx).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!