Background: Glomerular fibrosis is a tissue damage that occurs within the kidneys of chronic and diabetic kidney disease patients. Effective treatments are lacking, and the mechanism of glomerular damage reversal is poorly understood.
Methods: A mathematical model suitable for hypothesis-driven systems pharmacology of glomerular fibrosis in diabetes was developed from a previous model of interstitial fibrosis. The adapted model consists of a system of ordinary differential equations that models the complex disease etiology and progression of glomerular fibrosis in diabetes.
Results: Within the scope of the mechanism incorporated, advanced glycation end products (AGE)-matrix proteins that are modified due to high blood glucose-were identified as major contributors to the delay in the recovery from glomerular fibrosis after glucose control. The model predicted that inhibition of AGE production is not an effective approach for accelerating the recovery from glomerular fibrosis. Further, the model predicted that treatment breaking down accumulated AGE is the most productive at reversing glomerular fibrosis. The use of the model led to the identification that glucose control and aminoguanidine are ineffective treatments for reversing advanced glomerular fibrosis because they do not remove accumulated AGE. Additionally, using the model, a potential explanation was generated for the lack of efficacy of alagebrium in treating advanced glomerular fibrosis, which is due to the inability of alagebrium to reduce TGF- .
Impact: Using the mathematical model, a mechanistic understanding of disease etiology and complexity of glomerular fibrosis in diabetes was illuminated, and then hypothesis-driven explanations for the lack of efficacy of different pharmacological agents for treating glomerular fibrosis were provided. This understanding can enable the development of more efficacious therapeutics for treating kidney damage in diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543426 | PMC |
http://dx.doi.org/10.3389/fphar.2024.1481768 | DOI Listing |
J Vet Med Sci
January 2025
Laboratory of Veterinary Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University.
Apoptosis, an important pathological event associated with kidney disease progression, is expected to be a therapeutic target in chronic kidney disease (CKD). However, its role in naturally occurring CKD in aged cats remains unclear. Therefore, here, we investigated kidney tissues from aged cats (≥10 years) with or without azotemic CKD to evaluate apoptotic events using a terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) assay.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Department of Internal Medicine, Texas Tech University Health Sciences Centre, Lubbock, TX, United States.
While changes in glomerular function and structure may herald diabetic kidney disease (DKD), many studies have underscored the significance of tubule-interstitial changes in the progression of DKD. Indeed, tubule-interstitial fibrosis may be the most important determinant of progression of DKD as in many forms of chronic glomerulopathies. The mechanisms underlying the effects of tubular changes on glomerular function in DKD have intrigued many investigators, and therefore, the signaling mechanisms underlying the cross-talk between tubular cells and glomerular cells have been the focus of investigation in many recent studies.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
Department of Ultrasound, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
Background: Traditional 2-dimensional (2D) ultrasound is a noninvasive method in the assessment of glomerular disease. Ultrasound elastography shows promise in evaluating renal fibrosis, which plays a key role in glomerular disease progression. However, research in pediatric cohorts is limited.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu, China.
Chronic kidney disease (CKD) is closely linked to the aging process, making the identification of protein biomarkers that reflect aging in specific organs and tissues crucial for a deeper understanding of this phenomenon. This study aimed to identify potential aging-related proteins present in the urine of CKD patients. Utilizing liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomic analysis, we identified a total of 1,712 proteins in the urine samples from both healthy controls and CKD patients in our discovery cohort.
View Article and Find Full Text PDFHypertens Res
January 2025
Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
Mechanical forces such as glomerular hyperfiltration are crucial in the pathogenesis and progression of diabetic kidney disease. Piezo2 is a mechanosensitive cation channel and plays a major role in various biological and pathophysiological phenomena. We previously reported Piezo2 expression in mouse and rat kidneys and its alteration by dehydration and hypertension.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!