Background: Biocompatible nanocarriers are widely employed as drug-delivery vehicles for treatment. Nevertheless, indiscriminate drug release, insufficient organ-specific targeting, and systemic toxicity hamper nanocarrier effectiveness. Stimuli-responsive nano-sized drug delivery systems (DDS) are an important strategy for enhancing drug delivery efficiency and reducing unexpected drug release.
Methods: This study introduces a temperature- and ultrasound-responsive nano-DDS in which the copolymer p-(MEOMA--THPMA) is grafted onto mesoporous iron oxide nanoparticles (MIONs) to construct an MPL-p nano-DDS. The copolymer acts as a nanopore gatekeeper, assuming an open conformation at sub-physiological temperatures that allows drug encapsulation and a closed conformation at physiological temperatures that prevents unexpected drug release during circulation. Lactoferrin was conjugated to the nanoparticle surface via polyethylene glycol to gain organ-targeting ability. External ultrasonic irradiation of the nanoparticles in the targeted organs caused a conformational change of the copolymer and reopened the pores, facilitating controlled drug release.
Results: MPL-p exhibited excellent biocompatibility and rare drug release in circulation. When targeting delivery to the brain, ultrasound promoted the release of the loaded drugs in the brain without accumulation in other organs, avoiding the related adverse reactions, specifically those affecting the heart.
Conclusion: This study established a novel temperature- and ultrasound-responsive DDS that reduced systemic adverse reactions compared with traditional DDS, especially in the heart, and demonstrated excellent organ delivery efficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550713 | PMC |
http://dx.doi.org/10.2147/IJN.S470465 | DOI Listing |
J Nanobiotechnology
December 2024
Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
Polymeric biomaterials have important applications in aiding clinical disease treatment, including drug delivery, bioimaging, and tissue engineering. Currently, conventional tumor chemotherapy faces obstacles such as poor solubility/stability, inability to target, and uncontrolled drug release in clinical trials, for which the emergence of supramolecular material therapeutics combining non-covalent interactions with conventional therapies is a very promising candidate. Due to their molecular recognition abilities with a range of biomolecules, cucurbit[n]uril (CB[n]), a type of macrocyclic receptors with robust backbones, hydrophobic cavities, and carbonyl-binding channels, have garnered a lot of attention.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
College of Stomatology, Chongqing Medical University, 426#Songshibei Road, Yubei District, Chongqing, 401147, China.
Background: The multi-biological barriers present in the inflammatory microenvironment severely limit the targeted aggregation of anti-inflammatory drugs in the lesion area. However, conventional responsive drug carriers inevitably come into contact with several pro-responsive stimulatory mediators simultaneously, leading to premature drug release and loss of most therapeutic effects. Breaking through the multi-level barriers of the inflammatory microenvironment is essential to improve the enrichment and bioavailability of drugs.
View Article and Find Full Text PDFInt J Pharm
December 2024
Delta Pharmaceutics Ltd., Chatham, Kent ME4 4TB, UK; Centre for Research Innovation (CRI), University of Greenwich, Chatham ME4 4TB, UK. Electronic address:
In this study Selective Laser Sintering (SLS) was used to produce bilayer tablets containing rosuvastatin and acetylsalicylic acid. Initially, monolithic tablets of each drug were manufactured using different laser intensities in order to identify their impact on the tablet's dissolution, friability and hardness. After the optimization, the final bilayer tablet was fabricated using a new method, that allowed the printing using different powder blends.
View Article and Find Full Text PDFInt J Pharm
December 2024
Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA.
Transdermal drug delivery presents numerous advantages over conventional administration routes, including non-invasiveness, enhanced patient adherence, circumvention of hepatic first-pass metabolism, self-administration capabilities, controlled release, and increased bioavailability. Nevertheless, the barrier function of stratum corneum limits this strategy to molecules possessing requisite physicochemical attributes. To expand the field of transdermal delivery, researchers have pioneered physical enhancement techniques, with micron-sized needles emerging as a particularly promising platform for the transdermal and intradermal delivery of therapeutic agents across a spectrum of molecular sizes.
View Article and Find Full Text PDFInt J Pharm
December 2024
Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt.
Oleic acid liposomes (OALs) are novel vesicular carriers ofunsaturated fatty acids and their corresponding ionized species, arranged within an enclosed lipid bilayer. This study aimed to encapsulate moxifloxacin HCl (MOX), a broad-spectrum antibacterial drug into OALs for effective treatment of Methicillin-resistant Staphylococcus aureus (MRSA) infection through topical application. Various OALs were formulatedby combining varied quantities of phosphatidylcholine (PC), oleic acid (OA), and cholesterol (CH) with 50 mg of MOX.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!