A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of a novel light-sensitive PPG model using PPG scalograms and PPG-NET learning for non-invasive hypertension monitoring. | LitMetric

Development of a novel light-sensitive PPG model using PPG scalograms and PPG-NET learning for non-invasive hypertension monitoring.

Heliyon

Biomedical systems and Informatics Engineering Dept., Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, 21163, Jordan.

Published: November 2024

Background And Objective: Photoplethysmography (PPG) signals provide a non-invasive method for monitoring cardiovascular health, including blood pressure levels, which are critical for the early detection and management of hypertension. This study leverages wavelet transformation and special purpose deep learning model, enhanced by signal processing and normalization, to classify blood pressure stages from PPG signals. The primary objective is to advance non-invasive hypertension monitoring, improving the accuracy and efficiency of these assessments.

Methods: The study employed continuous wavelet transform (CWT) to prepare PPG signals for analysis using a special purpose PPG-NET designed by applying advanced deep-learning models. PPG-NET was verified by applying several pre-trained models, including Inception, MobileNetV2, InceptionResNetV2, and others to the PPG data. Rigorously five-fold cross-validated models were conducted to obtain the models' performance to ensure robustness and repeatability of results.

Results: The PPG-NET model demonstrated superior performance, achieving a perfect accuracy of 100 % in classifying the four stages of hypertension-normal, prehypertension, stage 1, and stage 2. The evaluation metrics reported include precision, sensitivity, and specificity, with the PPG-NET model achieving 100 % across all metrics. Other models showed varying levels of accuracy, with InceptionV3 also reaching 91.5 %, while some, like VGG-19, underperformed significantly.

Conclusions: Integrating CWT and PPG-NET offers a promising avenue for enhancing non-invasive blood pressure monitoring. The PPG-NET model, in particular, showed potential for clinical application due to its high accuracy and reliability. This study showed the effectiveness of combining advanced computational techniques with traditional PPG analysis, potentially leading to more personalized and accessible hypertension management strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546445PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e39745DOI Listing

Publication Analysis

Top Keywords

ppg signals
12
blood pressure
12
ppg-net model
12
non-invasive hypertension
8
hypertension monitoring
8
special purpose
8
ppg
7
ppg-net
7
model
5
development novel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!