A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The interaction of a self-assembled nanoparticle and a lipid membrane: Binding, disassembly and re-distribution. | LitMetric

The interaction of a self-assembled nanoparticle and a lipid membrane: Binding, disassembly and re-distribution.

Heliyon

Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa, Km 7.5. 07122, Palma de Mallorca, Spain.

Published: November 2024

Here we report a detailed study of the interactions of nanoparticles, formed by the self-assembly of cholesterol-containing porphyrins, with lipid membranes. We show that the interaction is a two-step process: first, the docking and fusion, then, the redistribution of the building blocks of the self-assembled nanoparticles (SANs henceforth). Analysis of the binding and structural data is consistent with the docking step being driven by a multivalence cooperative effect and with the formation of SAN aggregates on the membrane, whilst the solubility of the cholesterol anchor in the membrane is key to both the fusion and redistribution of the SANs building blocks. The tendency of the SAN to aggregate in the membrane helps explain the photosensitizer properties of the SANs, essential to their anti-microbial activity. The solubility of the cholesteryl anchors drives fusion to the membrane and de-assembly of the SAN, explaining the capability of the SANs to deliver therapeutic cargos at the lipid interface. The subsequent redistribution of the SANs building blocks offer a plausible pathway to body clearance that is not immediately available to hard nanoparticles. These properties, and the modularity of the synthesis, point to the SANs being an excellent platform for the development of nanomedicines. An unexpected consequence of unraveling the mechanism of membrane interaction of these SANs is that it allows us to derive a value of the free energy of binding of cholesterol (the membrane anchor of the SAN building blocks) to a lipid membrane, that is consistent with the literature values. This is an additional property that can be exploited to determine the affinity of a variety of membrane anchors to membranes of various compositions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550047PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e39681DOI Listing

Publication Analysis

Top Keywords

building blocks
16
membrane
9
lipid membrane
8
fusion redistribution
8
redistribution sans
8
sans building
8
sans
7
interaction self-assembled
4
self-assembled nanoparticle
4
lipid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!