AI Article Synopsis

  • - The study examines the African dung beetle, introduced to Australia in 1968 for biological control, focusing on its genetic and morphological changes across different regions of the continent.
  • - Analysis of 1594 SNP loci from 187 beetle samples indicated significant genetic differences between populations and limited gene flow over distances of 74-500 km.
  • - The fore tibia shape of the beetles, important for their tunneling behavior, showed notable differences among populations, suggesting that local adaptation and directional selection are influencing these variations despite genetic similarities.

Article Abstract

Species translocations are increasingly being used in conservation and for biological control. The success of a translocation can be strongly influenced by the evolutionary processes occurring during the early phase of the introduction and the subsequent spread to new regions. In this study, morphological variation and population genetic structure were assessed in the African dung beetle a species that was intentionally introduced to Australia for biological control in 1968 and subsequently spread widely across the northern part of the continent. A dataset based on 1594 neutral single nucleotide polymorphism (SNP) loci that were genotyped in 187 individuals from 12 sites revealed significant genetic divergences between sites (global  = 0.118) and provides evidence of restricted gene flow among established populations at small to moderate spatial scales (74-500 km). Geometric morphometric analyses revealed significant divergence among populations in the shape of the foretibia, a trait ecologically important for tunnelling in soil and dung. Moreover, phenotypic divergence in this trait for both sexes was significantly higher than genetic differentiation at selectively neutral loci (  >  ), suggesting that directional selection is contributing to the phenotypic divergences among populations. Our study shows how population structure can establish quickly in an introduced species and highlights the importance of considering local adaptation when performing translocations on established populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550911PMC
http://dx.doi.org/10.1002/ece3.70536DOI Listing

Publication Analysis

Top Keywords

phenotypic divergence
8
dung beetle
8
biological control
8
established populations
8
genetic
4
genetic phenotypic
4
divergence dung
4
beetle 50 years
4
50 years introduction
4
introduction australia
4

Similar Publications

We describe a set of monozygotic twins with GRIN2B-related neurodevelopmental disorder (GRIN2B-ND) who exhibited distinct clinical and imaging characteristics due to a de novo heterozygous pathogenic variant in the GRIN2B gene (c.2453T>C, p.Met818Thr).

View Article and Find Full Text PDF

Autism spectrum disorders encompass diverse neurodevelopmental conditions marked by alterations in social communication and repetitive behaviors. Advanced maternal age is associated with an increased risk of bearing children affected by autism but the etiological factors underlying this association are not well known. Here, we investigated the effects of advanced maternal age on offspring health and behavior in two genetically divergent mouse strains: the BTBR T Itpr3/J (BTBR) mouse model of idiopathic autism, and the C57BL/6 J (B6) control strain, as a model of genetic variability.

View Article and Find Full Text PDF

Background: The Japanese quail () is a small migratory bird whose main habitats are located in East Asia, Russia, China, Japan, Korea, and India. The Japanese quail was first introduced into the Iraqi research sector in the early 1980s. This investigation aimed to identify the genetic divergence between the available genetic lines of the Japanese quail in Iraq as a first step to conducting further conservation and breeding, benefiting from studying the genetic diversity related to productivity, adaptation, and immune susceptibility.

View Article and Find Full Text PDF

Phenotype prediction in plants is improved by integrating large-scale transcriptomic datasets.

NAR Genom Bioinform

December 2024

State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China.

Research on the dynamic expression of genes in plants is important for understanding different biological processes. We used the large amounts of transcriptomic data from various plant sample sources that are publicly available to investigate whether the expression levels of a subset of highly variable genes (HVGs) can be used to accurately identify the phenotypes of plants. Using maize ( L.

View Article and Find Full Text PDF

Comparative chloroplast genome analyses provide new insights into molecular markers for distinguishing Arnebiae Radix and its substitutes (tribe Lithospermeae, Boraginaceae).

Phytomedicine

December 2024

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China; Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, PR China. Electronic address:

Background: Arnebiae Radix has long been used in traditional medicine for its pleiotropic properties. However, distinguishing Arnebiae Radix from its substitutes or closely related species has been challenging due to limited phenotypic characteristics.

Purpose: We aimed to identify the molecular markers for distinguishing Arnebiae Radix from its confusion species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!