Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Solid-state electrolytes with high ionic conductivity will be crucial for future energy storage systems. Among many possible materials, thiophosphates offer both favourable mechanical properties and fast ionic transport. β-LiPS, as a member of the thiophosphate family, has gained recent attention, due to its remarkable increase in Li ionic conductivity when prepared solvent-assisted synthesis. Despite earlier studies, the lithium ion migration processes causing the increased conductivity remain, however, still uncertain. Here, we study both long-range cation transport and local Li jump processes by broadband impedance spectroscopy and nuclear magnetic resonance (NMR), respectively. In particular, we focus on the comparison between mechanochemical and solvent-assisted synthesis to determine the origin of the increased ionic conductivity observed in the latter. Our measurements reproduce the previously reported high ionic conductivity and reveal that synthesis conditions significantly affect the Arrhenius pre-exponential factor governing ionic conductivity. Diffusion-controlled Li (and P) NMR spin relaxation rates confirm rapid, anisotropic lithium ion hopping that is characterized by timescale-dependent activation energies ranging from 0.40 eV (long-range transport, as also seen by conductivity spectroscopy) to values down to 0.09 eV (local barriers).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4dt02636e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!