A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

2D-SnS-Embedded Schottky Device with Neurotransmitter-Like Functionality Produced Using Proximity Vapor Transfer Method for Photonic Neurocomputing. | LitMetric

2D-SnS-Embedded Schottky Device with Neurotransmitter-Like Functionality Produced Using Proximity Vapor Transfer Method for Photonic Neurocomputing.

Adv Mater

Photoelectric and Energy Device Application Lab (PEDAL) and Multidisciplinary Core Institute for Future Energies (MCIFE), Incheon National University, Incheon, 22012, South Korea.

Published: November 2024

Neuromorphic computing, which involves the creation of artificial synapses capable of mimicking biological brain activity, has intrigued researchers in the field of artificial intelligence (AI). To advance neuromorphic computing, a highly efficient 2D material-based artificial synapse capable of performing logical and arithmetic operations must be developed. However, fabricating large, uniform films or high-quality structures of 2D materials remains challenging because of their multistep and complex fabrication processes. In the present study, to produce large (Ø ≈ 3 in.), uniform, transparent neuromorphic devices, a novel single-step approach called proximity vapor transfer (PVT) that utilizes van der Waals (vdW) materials is employed. This single-step technique, which involves the fabrication of vdW materials on various substrates (glass, ITO, AZO, Mo, and Cu), allows control of the thickness and bandgap tunability. The Schottky device developed via the PVT method using vdW SnS with neurotransmitter (acetylcholine)-like functionality emulates biological synapses and exhibits photoelectronic synaptic behavior with wide-field-of-view synaptic plasticity. In addition, logic gate operations (NOT, OR, AND), reward-cascade neurotransmission, and imaging can be performed using 3 × 3 arrays of the device. This study represents a significant step toward the development of transparent and large-area synaptic devices, which are crucial for advancing AI applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202411420DOI Listing

Publication Analysis

Top Keywords

schottky device
8
proximity vapor
8
vapor transfer
8
neuromorphic computing
8
vdw materials
8
2d-sns-embedded schottky
4
device neurotransmitter-like
4
neurotransmitter-like functionality
4
functionality produced
4
produced proximity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!