The vertebral foramen, lamina, and vertebral body are three critical components of the spine structure, essential for maintaining spinal connectivity and stability. Accurately segmenting lumbar structures such as the vertebral body, vertebral foramen, and lamina in MRI cross-sections helps doctors better understand and diagnose the pathological causes of spine-related diseases. This study presents a multi-structure semantic segmentation method for vertebral transverse section MRI slices using WGAN with a residual U-Net and clustered Transformer. The generator network was replaced with a combination of a residual U-Net and a clustered Transformer-based segmentation network. The enhanced U-Net encoder, utilizing dilated convolutions and residual structures, improved multi-scale feature extraction capabilities. Meanwhile, the clustered Transformer structure, with reduced progressive linear complexity, ensured the extraction of global positional information. The results of multiple experiments show that the Dice coefficient for vertebral body segmentation increased by 3.1%, the Hausdorff distance decreased by 0.6 mm, mIOU improved by 4.1-96.2%, and PPV increased by 2.0-98.8% compared to mainstream segmentation models. These improvements are statistically significant (p < 0.05).Ablation experiments further validated the effectiveness of the proposed enhanced modules in improving segmentation accuracy for the three target structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551216PMC
http://dx.doi.org/10.1038/s41598-024-79244-yDOI Listing

Publication Analysis

Top Keywords

clustered transformer
12
vertebral body
12
vertebral foramen
8
foramen lamina
8
residual u-net
8
u-net clustered
8
vertebral
7
segmentation
5
wgan-based multi-structure
4
multi-structure segmentation
4

Similar Publications

Multiple token rearrangement Transformer network with explicit superpixel constraint for segmentation of echocardiography.

Med Image Anal

January 2025

General Hospital of the Southern Theatre Command, PLA, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China. Electronic address:

Diagnostic cardiologists have considerable clinical demand for precise segmentation of echocardiography to diagnose cardiovascular disease. The paradox is that manual segmentation of echocardiography is a time-consuming and operator-dependent task. Computer-aided segmentation can reduce the workflow greatly.

View Article and Find Full Text PDF

Background: Kidney tumors, common in the urinary system, have widely varying survival rates post-surgery. Current prognostic methods rely on invasive biopsies, highlighting the need for non-invasive, accurate prediction models to assist in clinical decision-making.

Purpose: This study aimed to construct a K-means clustering algorithm enhanced by Transformer-based feature transformation to predict the overall survival rate of patients after kidney tumor resection and provide an interpretability analysis of the model to assist in clinical decision-making.

View Article and Find Full Text PDF

The current work introduces the hybrid ensemble framework for the detection and segmentation of colorectal cancer. This framework will incorporate both supervised classification and unsupervised clustering methods to present more understandable and accurate diagnostic results. The method entails several steps with CNN models: ADa-22 and AD-22, transformer networks, and an SVM classifier, all inbuilt.

View Article and Find Full Text PDF

Recent advancements in deep learning, particularly large language models (LLMs), made a significant impact on how researchers study microbiome and metagenomics data. Microbial protein and genomic sequences, like natural languages, form a , enabling the adoption of LLMs to extract useful insights from complex microbial ecologies. In this paper, we review applications of deep learning and language models in analyzing microbiome and metagenomics data.

View Article and Find Full Text PDF

Cryo-electron tomography (cryo-ET) is confronted with the intricate task of unveiling novel structures. General class discovery (GCD) seeks to identify new classes by learning a model that can pseudo-label unannotated (novel) instances solely using supervision from labeled (base) classes. While 2D GCD for image data has made strides, its 3D counterpart remains unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!