Perturbation context in paced finger tapping tunes the error-correction mechanism.

Sci Rep

Sensorimotor Dynamics Lab, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina.

Published: November 2024

Sensorimotor synchronization (SMS) is the mainly specifically human ability to move in sync with a periodic external stimulus, as in keeping pace with music. The most common experimental paradigm to study its largely unknown underlying mechanism is the paced finger-tapping task, where a participant taps to a periodic sequence of brief stimuli. Contrary to reaction time, this task involves temporal prediction because the participant needs to trigger the motor action in advance for the tap and the stimulus to occur simultaneously, then an error-correction mechanism takes past performance as input to adjust the following prediction. In a different, simpler task, it has been shown that exposure to a distribution of individual temporal intervals creates a "temporal context" that can bias the estimation/production of a single target interval. As temporal estimation and production are also involved in SMS, we asked whether a paced finger-tapping task with period perturbations would show any time-related context effect. In this work we show that a perturbation context can indeed be generated by exposure to period perturbations during paced finger tapping, affecting the shape and size of the resynchronization curve. Response asymmetry is also affected, thus evidencing an interplay between context and intrinsic nonlinearities of the correction mechanism. We conclude that perturbation context calibrates the underlying error-correction mechanism in SMS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551152PMC
http://dx.doi.org/10.1038/s41598-024-78786-5DOI Listing

Publication Analysis

Top Keywords

perturbation context
12
error-correction mechanism
12
paced finger
8
finger tapping
8
paced finger-tapping
8
finger-tapping task
8
period perturbations
8
mechanism
5
paced
4
context paced
4

Similar Publications

RNA-protein interactions orchestrate hundreds of pathways in homeostatic and stressed cells. We applied an RNA-protein interactome capture method called protein cross-linked RNA extraction (XRNAX) to shed light on the RNA-bound proteome in dysmyelination. We found sets of canonical RNA-binding proteins (RBPs) regulating alternative splicing and engaged in the cytoplasmic granules to be perturbed at the level of their RNA interactome.

View Article and Find Full Text PDF

Fractional nonlinear partial differential equations are used in many scientific fields to model various processes, although most of these equations lack closed-form solutions. For this reason, methods for approximating solutions that occasionally yield closed-form solutions are crucial for solving these equations. This study introduces a novel technique that combines the residual function and a modified fractional power series with the Elzaki transform to solve various nonlinear problems within the Caputo derivative framework.

View Article and Find Full Text PDF

We investigate the influence of the network topology on the asymptotic dynamical patterns, attractors, in a general model of excitable dynamics on signed directed graphs. In this framework, network topology manifests itself as an interplay of positive and negative feedback loops. A small change in a feedback loop, by addition or removal of edges in the graph, can drastically change the dynamical patterns in the network, characterized by the appearance and disappearance of attractors from the attractor space of the network.

View Article and Find Full Text PDF

Collapse and Protein Folding: Should We Be Surprised that Biothermodynamics Works So Well?

Annu Rev Biophys

December 2024

1Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA; email:

A complete understanding of protein function and dynamics requires the characterization of the multiple thermodynamic states, including the denatured state ensemble (DSE). Whereas residual structure in the DSE (as well as in partially folded states) is pertinent in many biological contexts, here we are interested in how such structure affects protein thermodynamics. We examine issues related to chain collapse in light of new developments, focusing on potential complications arising from differences in the DSE's properties under various conditions.

View Article and Find Full Text PDF

PULSAR (personalized, ultra-fractionated stereotactic adaptive radiotherapy) is the adaptation of stereotactic ablative radiotherapy towards personalized cancer management. It has potential to harness the synergy between radiation therapy and immunotherapy, such as immune checkpoint inhibitors to amplify the anti-tumor immune response. For the first time, we applied a transformer-based attention mechanism to investigate the underlying interactions between combined PULSAR and PD-L1 blockade immunotherapy, based on the preliminary experimental results of a murine cancer model (Lewis Lung Carcinoma, LLC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!