Taxanes are one of the most widely used classes of breast cancer (BC) therapeutics. Despite the long history of clinical usage, the molecular mechanisms of their action and cancer resistance are still not fully understood. Here we aimed to identify gene expression and molecular pathway activation biomarkers of BC sensitivity to taxane drugs paclitaxel and docetaxel. We used to our knowledge the biggest collection of clinically annotated publicly available literature BC gene expression data (12 datasets, = 1250) and the experimental clinical BC cohort ( = 12). Seven literature datasets were used for biomarker discovery ( = 914), and the remaining five literature plus one experimental datasets ( = 336) - for the validation. We totally found 34 genes and 29 molecular pathways which could strongly discriminate good and poor responders to taxane treatments. The biomarker genes and pathways were associated with molecular processes related to formation of mitotic spindle and centromeres, and with the spindle assembly mitotic checkpoint. Furthermore, we created gene expression and pathway activation signatures predicting BC response to taxanes. These signatures were tested on the validation BC cohort and demonstrated strong biomarker potential reflected by mean AUC values of 0.76 and 0.77, respectively, which outperforms previously reported analogs. Taken together, these findings can deepen our understanding of mechanism of action of taxanes and potentially improve personalization of treatment in BC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1134/S0006297924100110 | DOI Listing |
Curr Protein Pept Sci
January 2025
Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi-75270, Pakistan.
Background: Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer with a high recurrence rate. A new therapeutic intervention is urgently needed to combat this lethal subtype. The identification of biomarkers is also crucial for improving outcomes in TNBC.
View Article and Find Full Text PDFCurr Pharm Des
January 2025
Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
Introduction: Sepsis, like neutropenic sepsis, is a medical condition in which our body overreacts to infectious agents. It is associated with damage to normal tissues and organs by the immune system, which leads to the spread of inflammation throughout our body. Of note, microRNAs (miRNAs) have been found to have a critical role in the sepsis progression.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
Cancer manifests as uncontrolled cell proliferation. Tankyrase, a poly(ADP-ribose) polymerase member, is vital in Wnt signal transmission, making it a promising cancer therapy target. The Wnt/β-catenin pathway regulates critical biological processes like genomic stability, gene expression, energy utilization, and apoptosis.
View Article and Find Full Text PDFBackground: Axial Spondyloarthritis (axSpA) is a chronic inflammatory rheumatic condition affecting the axial skeleton, leading to pain, stiffness, and fatigue. While biologic therapies have improved clinical management, many patients experience partial or no responses, resulting in delays in disease control. Additionally, the risk of adverse events and increased costs remains a concern.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Electronic address:
CD226 plays a vital role in natural killer (NK) cell cytotoxicity, interacting with its ligands CD112 and CD155 to initiate immune synapse formation, primarily through leukocyte function-associated-1 (LFA-1). Our study examined the role of CD226 in NK cell surveillance of acute myeloid leukemia (AML). NK cells in patients with AML had lower expression of CD226.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!