AI Article Synopsis

  • * Despite its negative effects, acetaldehyde may also have rewarding properties in the brain, suggesting it plays a role in alcohol addiction.
  • * The compound Alda-1 activates ALDH2, showing promise in animal studies for reducing alcohol consumption, preventing relapse, and protecting against alcohol-related tissue damage, indicating potential for treating alcohol use disorders.

Article Abstract

In mammals, ethanol is metabolized to acetaldehyde mainly by the liver alcohol dehydrogenase (ADH), and acetaldehyde is subsequently oxidized to acetate by mitochondrial aldehyde dehydrogenase (ALDH2). The presence of an inactive variant of ALDH2 or the use of inhibitors of this enzyme leads to an accumulation of acetaldehyde after ethanol consumption, generating an aversive reaction that inhibits subsequent alcohol intake. However, experimental evidence shows that acetaldehyde has potent rewarding effects at the central level, suggesting that acetaldehyde would be responsible for the addictive effect of alcohol. Alda-1 is an organic molecule that acts as a pharmacological activator of ALDH2. Studies in animal models of alcohol use disorders (AUD; i.e. alcoholism) have shown that Alda-1 can inhibit the acquisition, the chronic intake, and the relapse of alcohol consumption. These effects are reversible without any effects on water consumption or other natural reinforcer such as saccharin. It has also been reported that Alda-1 can act as a protective agent from the toxic effects on various tissues and organs mediated by ethanol-derived acetaldehyde, including liver damage, cancer, and central nervous system (CNS) alterations. Using in silico tools such as molecular docking the identification of important molecular interactions between Alda-1 and ALDH2 has been demonstrated, identifying new molecules with higher pharmacological features. Thus, there is now preclinical evidence supporting the use of activators of ALDH2 as a pharmacological strategy for the treatment of AUD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.irn.2024.07.003DOI Listing

Publication Analysis

Top Keywords

activators aldh2
8
strategy treatment
8
alcohol disorders
8
aldh2
6
alcohol
6
acetaldehyde
6
pharmacological
4
pharmacological activators
4
aldh2 strategy
4
treatment alcohol
4

Similar Publications

Aldehyde Dehydrogenase 2 Lactylation Aggravates Mitochondrial Dysfunction by Disrupting PHB2 Mediated Mitophagy in Acute Kidney Injury.

Adv Sci (Weinh)

December 2024

Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.

Mitochondrial dysfunction is a crucial event in acute kidney injury (AKI), leading to a metabolic shift toward glycolysis and increased lactate production. Lactylation, a posttranslational modification derived from lactate, plays a significant role in various cellular processes, yet its implications in AKI remain underexplored. Here, a marked increase in lactate levels and pan-Kla levels are observed in kidney tissue from AKI patients and mice, with pronounced lactylation activity in injured proximal tubular cells identified by single-cell RNA sequencing.

View Article and Find Full Text PDF

Introduction: Flavonoids including quercetin, kaempferol, myricetin, rutin etc. have always been a part of traditional Chinese medicine for the treatment of several ailments. Rutin (RT), also known as rutoside, sophorin is one of the flavanol glycoside having structure resemblance with quercetin.

View Article and Find Full Text PDF

Aldehydes are organic compounds containing a carbonyl group found exogenously or produced by normal metabolic processes and their accumulation can lead to toxicity if not cleared. Aldehyde dehydrogenases (ALDHs) are NAD(P)-dependent enzymes that catalyze the oxidation of such aldehydes and prevent their accumulation. Along with this primary detoxification function, the known 19 human isoforms of ALDHs, which act on different substrates, are also involved in various physiological and developmental processes.

View Article and Find Full Text PDF

Synthetic mismatches enable specific CRISPR-Cas12a-based detection of genome-wide SNVs tracked by ARTEMIS.

Cell Rep Methods

December 2024

Department of Human Genetics, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands. Electronic address:

Detection of pathogenic DNA variants is vital in cancer diagnostics and treatment monitoring. While CRISPR-based diagnostics (CRISPRdx) offer promising avenues for cost-effective, rapid, and point-of-care testing, achieving single-nucleotide detection fidelity remains challenging. We present an in silico pipeline that scans the human genome for targeting pathogenic mutations in the seed region (ARTEMIS), the most stringent crRNA domain.

View Article and Find Full Text PDF

Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry.

ACS Sens

December 2024

Department of Biomedical Devices and Instrumentation, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.

Highly sensitive and selective imaging of human-borne volatile organic compounds (VOCs) enables an intuitive understanding of their concentrations and release sites. While multi-VOC imaging methods have the potential to facilitate step-by-step metabolic tracking and improve disease screening accuracy, no such system currently exists. In this study, we achieved simultaneous imaging of ethanol (EtOH) and acetaldehyde (AcH), the starting molecule and an intermediate metabolite of alcohol metabolism, using a multiwavelength VOC imaging system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!