Background & Aims: Metabolic dysfunction-associated steatotic liver disease ranges from metabolic dysfunction-associated steatotic liver (MASL) to metabolic dysfunction-associated steatohepatitis (MASH) with fibrosis. Transdifferentiation of hepatic stellate cells (HSCs) into fibrogenic myofibroblasts plays a critical role in the pathogenesis of MASH liver fibrosis. We compared transcriptome and chromatin accessibility of human HSCs from NORMAL, MASL, and MASH livers at single-cell resolution. We aimed to identify genes that are upregulated in activated HSCs and to determine which of these genes are key in the pathogenesis of MASH fibrosis.

Methods: Eighteen human livers were profiled using single-nucleus (sn)RNA-seq and snATAC-seq. High priority targets were identified, then tested in 2D human HSC cultures, 3D human liver spheroids, and HSC-specific gene knockout mice.

Results: MASH-enriched activated HSC subclusters are the major source of extracellular matrix proteins. We identified a set of concurrently upregulated and more accessible core genes (GAS7, SPON1, SERPINE1, LTBP2, KLF9, EFEMP1) that drive activation of HSCs. Expression of these genes was regulated via crosstalk between lineage-specific (JUNB/AP1), cluster-specific (RUNX1/2) and signal-specific (FOXA1/2) transcription factors. The pathological relevance of the selected targets, such as SERPINE1 (PAI-1), was demonstrated using dsiRNA-based HSC-specific gene knockdown or pharmacological inhibition of PAI-1 in 3D human MASH liver spheroids, and HSC-specific Serpine1 knockout mice.

Conclusion: This study identified novel gene targets and regulatory mechanisms underlying activation of MASH fibrogenic HSCs and demonstrated that genetic or pharmacological inhibition of select genes suppressed liver fibrosis.

Impact And Implications: Herein, we present the results of a multi-modal sequencing analysis of human hepatic stellate cells (HSCs) from NORMAL, MASL (metabolic dysfunction-associated steatotic liver), and metabolic dysfunction-associated steatohepatitis (MASH) livers. We identified additional subclusters that were not detected by previous studies and characterized the mechanism by which HSCs are activated in MASH livers, including the transcriptional machinery that induces the transdifferentiation of HSCs into myofibroblasts. For the first time, we described the pathogenic role of activated HSC-derived PAI-1 (a product of the SERPINE1 gene) in the development of MASH liver fibrosis. Targeting the RUNX1/2-SERPINE1 axis could be a novel strategy for the treatment of liver fibrosis in patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhep.2024.10.044DOI Listing

Publication Analysis

Top Keywords

metabolic dysfunction-associated
24
dysfunction-associated steatotic
16
steatotic liver
16
hepatic stellate
12
stellate cells
12
mash liver
12
liver fibrosis
12
mash livers
12
liver
10
mash
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!