Connexins are essential for intercellular communication through gap junctions and the maintenance of cellular and tissue homeostasis. Connexin 43 (Cx43) is the most ubiquitously expressed connexin. As well as regulating homeostasis, Cx43 hemichannels and gap junctions play important roles in inflammation and the immune response. This, coupled with a range of non-channel functions performed by Cx43 makes it an attractive target for viruses. Recently, several groups have begun to explore the relationship between Cx43 and viral infection, with a diverse array of viruses being found to alter Cx43 hemichannels/gap junctions. Importantly, this includes several small DNA tumour viruses, which may target Cx43 to promote tumorigenesis. This review focuses on the ability of selected RNA/DNA viruses and retroviruses to either positively or negatively regulate Cx43 hemichannels and gap junctions in order to carry out their lifecycles. The role of Cx43 regulation by tumour viruses is also discussed in relation to tumour progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607658 | PMC |
http://dx.doi.org/10.1016/j.tvr.2024.200296 | DOI Listing |
Background: Patients with arrhythmogenic cardiomyopathy (ACM) due to pathogenic variants in , the gene for the desmosomal protein plakophilin-2, are being enrolled in gene therapy trials designed to replace the defective allele via adeno-associated viral (AAV) transduction of cardiac myocytes. Evidence from experimental systems and patients indicates that ventricular myocytes in ACM have greatly reduced electrical coupling at gap junctions and reduced Na current density. In previous AAV gene therapy trials, <50% of ventricular myocytes have generally been transduced.
View Article and Find Full Text PDFBackground: Juxtaglomerular (JG) cells are sensors that control blood pressure and fluid-electrolyte homeostasis. In response to a decrease in perfusion pressure or changes in the composition and/or volume of the extracellular fluid, JG cells release renin, which initiates an enzymatic cascade that culminates in the production of angiotensin II (Ang II), a potent vasoconstrictor that restores blood pressure and fluid homeostasis. In turn, Ang II exerts a negative feedback on renin release, thus preventing excess circulating renin and the development of hypertension.
View Article and Find Full Text PDFAdv Mater
January 2025
Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa, 252-5258, Japan.
Twistronics, a novel engineering approach involving the alignment of van der Waals (vdW) integrated two-dimensional materials at specific angles, has recently attracted significant attention. Novel nontrivial phenomena have been demonstrated in twisted vdW junctions (the so-called magic angle), such as unconventional superconductivity, topological phases, and magnetism. However, there have been only few reports on integrated vdW layers with large twist angles θ, such as twisted interfacial Josephson junctions using high-temperature superconductors.
View Article and Find Full Text PDFNeurochem Int
January 2025
Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China. Electronic address:
The term "circadian rhythm" refers to the 24-hour oscillations found in various physiological processes in organisms, responsible for maintaining bodily homeostasis. Many neurological diseases mainly involve the process of demyelination, and remyelination is crucial for the treatment of neurological diseases. Current research mainly focuses on the key role of circadian clocks in the pathophysiological mechanisms of multiple sclerosis.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Google Quantum AI, Santa Barbara, California 93117, USA.
Quantum error correction (QEC) provides a practical path to fault-tolerant quantum computing through scaling to large qubit numbers, assuming that physical errors are sufficiently uncorrelated in time and space. In superconducting qubit arrays, high-energy impact events can produce correlated errors, violating this key assumption. Following such an event, phonons with energy above the superconducting gap propagate throughout the device substrate, which in turn generate a temporary surge in quasiparticle (QP) density throughout the array.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!