Profiling immune cell tissue niches in the spatial -omics era.

J Allergy Clin Immunol

Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom; Cellular Genetics, the Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom. Electronic address:

Published: November 2024

Immune responses require complex, spatially coordinated interactions between immune cells and their tissue environment. For decades, we have imaged tissue sections to visualize a limited number of immune-related macromolecules in situ, functioning as surrogates for cell types or processes of interest. However, this inevitably provides a limited snapshot of the tissue's immune landscape. Recent developments in high-throughput spatial -omics technologies, particularly spatial transcriptomics, and its application to human samples has facilitated a more comprehensive understanding of tissue immunity by mapping fine-grained immune cell states to their precise tissue location while providing contextual information about their immediate cellular and tissue environment. These data provide opportunities to investigate mechanisms underlying the spatial distribution of immune cells and its functional implications, including the identification of immune niches, although the criteria used to define this term have been inconsistent. Here, we review recent technological and analytic advances in multiparameter spatial profiling, focusing on how these methods have generated new insights in translational immunology. We propose a 3-step framework for the definition and characterization of immune niches, which is powerfully facilitated by new spatial profiling methodologies. Finally, we summarize current approaches to analyze adaptive immune repertoires and lymphocyte clonal expansion in a spatially resolved manner.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2024.11.001DOI Listing

Publication Analysis

Top Keywords

immune cell
8
spatial -omics
8
immune
8
immune cells
8
tissue environment
8
immune niches
8
spatial profiling
8
tissue
6
spatial
6
profiling immune
4

Similar Publications

The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges.

View Article and Find Full Text PDF

Characterization of a chitinase from Trichinella spiralis and its immunomodulatory effects on allergic airway inflammation in mice.

Parasit Vectors

January 2025

School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China.

Background: A fundamental tenet of the hygiene theory is the inverse association between helminth infections and the emergence of immune-mediated diseases. Research has been done to clarify the processes by which helminth-derived molecules can inhibit immunological disorders. This study aimed to evaluate the ability of Trichinella spiralis chitinase (Ts-chit) to ameliorate the symptoms of allergic airway inflammation.

View Article and Find Full Text PDF

Lipid nanoparticles deliver DNA-encoded biologics and induce potent protective immunity.

Mol Cancer

January 2025

Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.

Lipid nanoparticles (LNPs) for mRNA delivery have advanced significantly, but LNP-mediated DNA delivery still faces clinical challenges. This study compared various LNP formulations for delivering DNA-encoded biologics, assessing their expression efficacy and the protective immunity generated by LNP-encapsulated DNA in different models. The LNP formulation used in Moderna's Spikevax mRNA vaccine (LNP-M) demonstrated a stable nanoparticle structure, high expression efficiency, and low toxicity.

View Article and Find Full Text PDF

Targeting lipid metabolism: novel insights and therapeutic advances in pancreatic cancer treatment.

Lipids Health Dis

January 2025

Emergency surgery Dapartment (Trauma center), The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, Henan, China.

Lipid metabolism in cancer is characterized by dysregulated lipid regulation and utilization, critical for promoting tumor growth, survival, and resistance to therapy. Pancreatic cancer (PC) is a highly aggressive malignancy of the gastrointestinal tract that has a dismal 5-year survival rate of less than 10%. Given the essential function of the pancreas in digestion, cancer progression severely disrupts its function.

View Article and Find Full Text PDF

The prognostic value of systemic immune-inflammation index in patients with unresectable hepatocellular carcinoma treated with immune-based therapy.

Biomark Res

January 2025

Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University180 Fenglin Road, Shanghai, 200032, China.

Background: Predicting the efficacy of immune-based therapy in patients with unresectable hepatocellular carcinoma (HCC) remains a clinical challenge. This study aims to evaluate the prognostic value of the systemic immune-inflammation index (SII) in forecasting treatment response and survival outcomes for HCC patients undergoing immune-based therapy.

Methods: We analyzed a cohort of 268 HCC patients treated with immune-based therapy from January 2019 to March 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!