AI Article Synopsis

  • Microplastics and oil are growing contaminants in the Arctic, yet their combined effects on marine life, specifically copepods, remain under-researched.
  • A study focused on three copepod species revealed that exposure to oil alone significantly reduced fecal pellet production by 34-58%, while microplastics and dispersant did not enhance this negative effect.
  • Additionally, oil exposure led to delayed hatching and lower success rates in copepod eggs, particularly with C. glacialis experiencing a 50% decrease in hatching success when exposed to both oil and microplastics.

Article Abstract

Microplastics (MPs) and petroleum hydrocarbons are contaminants of emerging concern in the Arctic, but little is known about their co-exposure effects. In this study, we present the first assessment of the sublethal impacts resulting from combined exposure to microplastics and oil in three key Arctic copepod species. Specifically, we investigated the effects of a 5-day exposure to oil alone (1 μL L) and in combination with MPs (polyethylene microspheres, 20 μm, 20 MP mL) and dispersant (Corexit 9500, 0.05 μL L) on the biological functions and lipid profiles of the planktonic copepods Metridia longa, Calanus finmarchicus, and Calanus glacialis. Exposure to oil alone caused a significant reduction (34-58%) in fecal pellet production, but neither microplastics nor dispersant increased the negative effect of oil on fecal pellet production. C. glacialis and C. finmarchicus exposed to the studied pollutants for 5 days produced eggs with delayed hatching and lower hatching success. The highest hatching inhibition (50%) was observed in eggs of C. glacialis exposed to oil plus MPs and dispersant for five days. This indicates that maternal transfer of oil components to eggs negatively affects embryonic development and hatching. Lipid content and fatty acids profiles varied among the studied copepod species but were not affected by the tested pollutants after five days of exposure. By microscopical observation of fecal pellets, ingestion of small oil droplets and MPs was confirmed in all species, but the estimated ingestion of MPs was low (<25 MPs cop d, <0.2% of total offered MPs) suggesting avoidance of MP consumption in copepods. Our results indicate that virgin MPs did not increase the toxicity of oil to the studied Arctic copepods under co-exposure conditions, and dispersants can slightly increase certain adverse effects of oil (hatching). However, environmentally relevant concentrations of oil alone can negatively impact Arctic keystone copepods and potentially the biological carbon pump. These findings emphasize the need to reduce petrogenic pollution and the risk of oil spills in the sensitive Arctic ecosystem.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.125286DOI Listing

Publication Analysis

Top Keywords

oil
8
lipid profiles
8
copepod species
8
exposure oil
8
fecal pellet
8
pellet production
8
pollutants days
8
mps
5
sublethal effects
4
effects microplastic
4

Similar Publications

Phytometabolites, Pharmacological Effects, Ethnomedicinal Properties, and Bioeconomic Potential of Velvet Apple (Diospyros discolor Willd.): A Review.

Chem Biodivers

January 2025

Liverpool John Moores University, Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Byrom Street, Liverpool, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Diospyros discolor Willd., commonly known as Velvet apple or Mabolo, is an underutilized fruit. Traditionally, various parts of D.

View Article and Find Full Text PDF

Dry deposition is an important yet poorly constrained process that removes reactive organic carbon from the atmosphere, making it unavailable for airborne chemical reactions and transferring it to other environmental systems. Using an aircraft-based measurement method, we provide large-scale estimates of total gas-phase organic carbon deposition rates and fluxes. Observed deposition rates downwind of large-scale unconventional oil operations reached up to 100 tC hour, with fluxes exceeding 0.

View Article and Find Full Text PDF

A rare dominant allele determines seed coat color and improves seed oil content in .

Sci Adv

January 2025

College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.

Yellow seed coat color (SCC) is a valuable trait in , which is significantly correlated to high seed oil content (SOC) and low seed lignocellulose content (SLC). However, no dominant yellow SCC genes were identified in . In this study, a dominant yellow SCC N53-2 was verified, and then 58,981 eQTLs and 25 trans-eQTL hotspots were identified in a double haploid population derived from N53-2 and black SCC material Ken-C8.

View Article and Find Full Text PDF

Characterizing the feeding ecology of threatened species is essential to establish appropriate conservation strategies. We focused our study on the proboscis monkey (Nasalis larvatus), an endangered primate species which is endemic to the island of Borneo. Our survey was conducted in the Lower Kinabatangan Wildlife Sanctuary (LKWS), a riverine protected area that is surrounded by oil palm plantations.

View Article and Find Full Text PDF

Clove oil obtained from Syzygium aromaticum (L.) is traditionally employed to treat inflammation associated with rheumatism, gastric disorders, and as an analgesic. Chemo-herbal combinations are known to have potent anti-inflammatory and analgesic effects, while mitigating the drug related side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!