Antibacterial hydrogels have generated significant interest for their potential therapeutic applications. Ozone (O₃) is recognized for its antibacterial, anti-inflammatory, immunomodulatory, and anti-hypoxic properties, along with its minimal residual impact. However, the development of sustained O₃-release antibacterial hydrogels has been challenging due to the low solubility and short lifespan of ozone. We present an ozone-loaded emulsion hydrogel (ozonegel), which encapsulates ozonized oil within a nanoclay-poly(methacryloxyethyl sulfobetaine) supramolecular network. This adhesive, self-healing ozonegel achieves high ozone loading (91.3 mmol/kg) and releases O₃ and reactive oxygen species (ROS) over 36 h. It demonstrates broad antibacterial and anti-inflammatory effects, promoting wound healing. The remarkable properties of ozonegels suggest significant potential for advanced biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2024.10.053DOI Listing

Publication Analysis

Top Keywords

wound healing
8
antibacterial hydrogels
8
antibacterial anti-inflammatory
8
antibacterial
5
self-healing adhesive
4
adhesive hydrogels
4
hydrogels sustained
4
ozone
4
sustained ozone
4
ozone release
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!