Titanium and its alloys are widely used as orthopedic implants owing to their good mechanical properties and excellent corrosion resistance. However, the insufficient osteogenic activity and antibacterial properties hinder their clinical applications. To address these issues, TiO nanotube arrays (TNT) were first fabricated on the TA2 alloy surface via an anodizing technique, and strontium ions (Sr) were then loaded by hydrothermal reaction (TNT + Sr) and annealing treatment (TNT + A). Subsequently, the polydopamine layer (TNT + PDA) was constructed to immobilize the carboxymethyl chitosan and alendronate sodium (TNT + CA) mixture. The prepared coatings were thoroughly characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectrometer (XPS), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffractometer (XRD), and water contact angle measurement. The results confirmed that Sr ions, polydopamine, and carboxymethyl chitosan/alendronate sodium were successfully immobilized on the nanotubes. The coating of TNT + CA significantly enhanced the hydrophilicity, and effectively delayed the release of Sr and alendronate. The TNT + CA coating significantly promoted osteoblast adhesion and proliferation, and up-regulated the expressions of alkaline phosphatase (ALP), osteocalcin (OCN), and osteoblast-specific transcription factor (RUNX2). TNT + CA was able to rapidly induce in situ hydroxyapatite deposition from the simulated body fluid (SBF). Moreover, TNT + CA coating showed inhibition against Escherichia coli and Staphylococcus aureus (especially against Escherichia coli). The prepared TNT + CA coating provides a novel strategy for enhancing bone affinity, improving osteoblast behaviors, and antibacterial properties of titanium-based biomaterials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioadv.2024.214107 | DOI Listing |
Int J Biol Macromol
December 2024
School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin Province 132012, China. Electronic address:
While plant fibers are abundant and biodegradable natural polymers, their high hydrophilicity often limits their applicability. To broaden the applicability of plant fiber materials across diverse fields, the present study employed cellulosic paper as a substrate and alkenyl succinic anhydride (ASA) as a low surface free energy material to fabricate a series of hydrophobic cellulosic papers (ASAP, ASA-P@Si, ASA-P@Ca, and ASA-P@Ti) through surface coating and physical vapor deposition of ASA. The results demonstrated that, in comparison to uncoated cellulosic paper, the coated variants exhibited significantly improved hydrophobicity.
View Article and Find Full Text PDFBiomater Adv
February 2025
The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223003, China; The Second Affiliated Hospital and YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, China. Electronic address:
Titanium and its alloys are widely used as orthopedic implants owing to their good mechanical properties and excellent corrosion resistance. However, the insufficient osteogenic activity and antibacterial properties hinder their clinical applications. To address these issues, TiO nanotube arrays (TNT) were first fabricated on the TA2 alloy surface via an anodizing technique, and strontium ions (Sr) were then loaded by hydrothermal reaction (TNT + Sr) and annealing treatment (TNT + A).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Pre-Treatment and Finishing of Cellulosic Fabric Department, Textile Research and Technology Institute, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
Wound infections caused by multidrug-resistant bacteria pose a significant challenge globally in healthcare. Traditional wound dressings often lack efficacy against these resilient pathogens, necessitating the exploration of innovative approaches to combat infections and promote wound healing. This study was designed to investigate a novel wound dressing marine extract-infused electrospun cellulose acetate nanofibers (CANF) with particular emphasis on combating multidrug-resistant bacteria.
View Article and Find Full Text PDFCarbohydr Polym
January 2025
Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China. Electronic address:
Osteomyelitis is a refractory disease of orthopedics, part of which is caused by medical implants. The main difficulties in treatment are the barrier effect after the formation of bacterial biofilm, and the difficulty in achieving sustained antibiotic intervention. In view of this situation, we studied a hydrogel coating that can release CaCl and vancomycin in pH-responsive manner.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!