AI Article Synopsis

  • Combining HDAC inhibitors with PPARγ agonists shows promise in fighting cancer, particularly melanoma.
  • A new compound, CS4, has been developed and found to effectively inhibit HDAC enzymes and reduce the growth of melanoma cells.
  • CS4 not only enhances specific protein acetylation to inhibit cell growth but also induces cell cycle arrest and has minimal toxicity in vivo, suggesting its potential as a melanoma treatment.

Article Abstract

The combined treatment with histone deacetylase (HDAC) inhibitors with peroxisome proliferator-activated receptor γ (PPARγ) agonists has displayed significant anticancer efficacy. Based on these results, a series of cloxiquine derivatives were prepared as potent HDAC inhibitors for the treatment of melanoma. Among these compounds, CS4 exhibited excellent inhibitory effects on HDAC1 (IC = 38 nM) and HDAC6 (IC = 12 nM), and had good antiproliferative effects against A375 and SK-MEL-5 melanoma cells (IC values, 1.20 and 0.93 μM, respectively). Mechanism research indicated that CS4 inhibited SK-MEL-5 cell growth by promoting α-tubulin and histone 3 (H3) acetylation. At the metabolic level, treatment with BG11 activated PPARγ and blocked glycolysis in SK-MEL-5 cells, which mediated partial antimelanoma effects of CS4. In addition, CS4 also induced cell cycle arrest at G2, suppressed migration and facilitated apoptosis of SK-MEL-5 cells. More importantly, compound CS4 demonstrated significant in vivo anticancer effect compared with SAHA, and exhibited neglectable toxicity. Consequently, CS4 is the potent HDAC inhibitor, which may be developed as the candidate antimelanoma drug.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2024.117029DOI Listing

Publication Analysis

Top Keywords

potent hdac
12
hdac inhibitors
12
cloxiquine derivatives
8
inhibitors treatment
8
treatment melanoma
8
cs4
6
discovery cloxiquine
4
derivatives potent
4
hdac
4
treatment
4

Similar Publications

Characterization of the Activities of Vorinostat Against .

Int J Mol Sci

January 2025

Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.

is a globally widespread pathogen of significant veterinary and medical importance, causing abortion or congenital disease in humans and other warm-blooded animals. Nevertheless, the current treatment options are restricted and sometimes result in toxic side effects. Hence, it is essential to discover drugs that demonstrate potent anti- activity.

View Article and Find Full Text PDF

Background: Givinostat, a potent histone deacetylase (HDAC) inhibitor, is promising for the treatment of relapsed leukemia and myeloma.

Purpose: This study aimed to develop and verify a quick assay for the measurement of givinostat concentration using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) with eliglustat as the internal standard (IS), establishing a basic pharmacokinetic profile for its pre-clinical application and metabolic stability in vitro.

Methods: Sample preparation was performed via protein precipitation using acetonitrile.

View Article and Find Full Text PDF

Discovery of WDR5-MLL1 and HDAC Dual-Target Inhibitors for the Treatment of Acute Myeloid Leukemia.

J Med Chem

January 2025

Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.

Targeting the WDR5-MLL1 protein-protein interaction (PPI) is considered to be an effective approach for the treatment of MLL-rearranged leukemia. However, interfering with WDR5-MLL1 PPI reduces methylated H3K4 levels and induces a decline in acetylated H3 levels, which may contribute to the suboptimal cellular efficacy of WDR5 inhibitors. We observed that cotreatment with WDR5-MLL1 PPI and HDAC inhibitors augmented the antiproliferative effect in MV-4-11 cells.

View Article and Find Full Text PDF

Thiols have interesting bio-chemical properties and can be found in a number of approved drugs. However, some thiols exhibited poor plasma stability and microsomal stability, leading to poor in vivo activity and poor oral bio-availability, in spite of their potent activity in vitro. Prodrug is a classic strategy to improve drug pharmacokinetics.

View Article and Find Full Text PDF

Semisynthesis of Alkaloid Derivatives: Pyranoacridone-Hydroxamic Acid Cytotoxic Conjugates with HDAC and Topoisomerase II α Dual Inhibitory Activity.

J Nat Prod

January 2025

Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India.

Inspired by our previous efforts in the semisynthetic modification of naturally occurring pyranoacridones, we report the targeted design and semisynthesis of dual inhibitors of HDAC and topoisomerase II α (Topo II α) derived from des--methylacronycine () and noracronycine () pyranoacridone alkaloids. Designed from the clinically approved SAHA, the cytotoxic pyranoacridone nuclei from the alkaloids served as the capping group, while a hydroxamic acid moiety functioned as the zinc-binding group. Out of 16 compounds evaluated in an cytotoxicity assay, KT32 () with noracronycine () as the capping group and five-carbon linker hydroxamic acid side chains showed good cytotoxic activity with IC values of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!