Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ferrous iron (Fe(II)) produced by microbial Fe(III) reduction and reactive oxygen species (ROS) generated from aerobic Fe(II) oxidation can mediate iodate (IO) reduction and iodide (I) oxidation, respectively. Nevertheless, how Fe redox cycling under redox fluctuating conditions drives transformation of iodine species remain unclear. In this study, Shewanella oneidensis MR-1 wildtype (WT) and its mutant △dmsEFAB, which lost the ability to enzymatically reduce IO, were chosen to conduct ferrihydrite/goethite/nontronite culture experiments under consecutive cycles of anoxic reduction of Fe(III) and re-oxidation of Fe(II) by O to reveal the role of Fe redox cycling in the transformation of iodine species. The results showed that both surface-adsorbed and mineral structural Fe(II) chemically reduced IO. Chemical IO reduction by biogenic Fe(II) was slower than enzymatic IO reduction by WT. Compared to △dmsEFAB cultures, WT cultures all showed higher Fe(II) concentrations under anoxic conditions but lower cumulative •OH under oxic conditions, which imply the chemical reaction between I and ROS. I oxidation by ROS, however, did not lead to a significant production of IO compared with I formed under anoxic conditions. Consequently, Fe redox cycling successively reduced IO to I, which highlights vital roles of Fe(III)-reducing bacteria in I formation and mobilization in environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.136436 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!