Objective: Our study aims to develop a deep learning-based Ankylosing Spondylitis (AS) diagnostic model that achieves human expert-level performance using only a minimal amount of labeled samples for training, in regions with limited access to expert resources.
Methods: Our semi-supervised diagnostic model for AS was developed using 5389 pelvic radiographs (PXRs) from a single medical center, collected from March 2014 to April 2022. The dataset was split into a training set and a validation set with an 8:2 ratio, allocating 431 labeled images and the remaining 3880 unlabeled images for semi-supervised learning. The model's performance was evaluated on 982 PXRs from the same center, assessing metrics such as AUC, accuracy, precision, recall, and F1 scores. Interpretability analysis was performed using explainable algorithms to validate the model's clinical applicability.
Results: Our semi-supervised learning model achieved accuracy, recall, and precision values of 0.891, 0.865, and 0.859, respectively, using only 10% of labeled data from the entire training set, surpassing human expert performance. Extensive interpretability analysis demonstrated the reliability of our model's predictions, making the deep neural network no longer a black box.
Conclusion: This study marks the first application of semi-supervised learning to diagnose AS using PXRs, achieving a 90% reduction in manual annotation costs. The model showcases robust generalization on an independent test set and delivers reliable diagnostic performance, supported by comprehensive interpretability analysis. This innovative approach paves the way for training high-performance diagnostic models on large datasets with minimal labeled data, heralding a cost-effective future for medical imaging research in big data analytics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2024.109232 | DOI Listing |
ACS Sens
January 2025
Department of Engineering Physics, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada.
Current approaches for classifying biosensor data in diagnostics rely on fixed decision thresholds based on receiver operating characteristic (ROC) curves, which can be limited in accuracy for complex and variable signals. To address these limitations, we developed a framework that facilitates the application of machine learning (ML) to diagnostic data for the binary classification of clinical samples, when using real-time electrochemical measurements. The framework was applied to a real-time multimeric aptamer assay (RT-MAp) that captures single-frequency (12.
View Article and Find Full Text PDFTop Cogn Sci
January 2025
Department of Psychology, University of Wisconsin-Madison.
Whereas cognitive models of learning often assume direct experience with both the features of an event and with a true label or outcome, much of everyday learning arises from hearing the opinions of others, without direct access to either the experience or the ground-truth outcome. We consider how people can learn which opinions to trust in such scenarios by extending the hedge algorithm: a classic solution for learning from diverse information sources. We first introduce a semi-supervised variant we call the delusional hedge capable of learning from both supervised and unsupervised experiences.
View Article and Find Full Text PDFJ Comput Chem
January 2025
School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India.
The ensemble properties of a system are obtained by averaging over the properties calculated for the various configurations it can have at a finite temperature and thus cannot be captured by a single molecular structure. Such ensemble properties are often important in material discovery. In designing new materials, the goal is to predict those ensemble structures that display a tailored property.
View Article and Find Full Text PDFInt J Chron Obstruct Pulmon Dis
January 2025
Department of Cardiology, Respiratory Medicine and Intensive Care, University Hospital Augsburg, Augsburg, Germany.
Background: Chronic obstructive pulmonary disease (COPD) affects breathing, speech production, and coughing. We evaluated a machine learning analysis of speech for classifying the disease severity of COPD.
Methods: In this single centre study, non-consecutive COPD patients were prospectively recruited for comparing their speech characteristics during and after an acute COPD exacerbation.
Evolutionary sparse learning (ESL) uses a supervised machine learning approach, Least Absolute Shrinkage and Selection Operator (LASSO), to build models explaining the relationship between a hypothesis and the variation across genomic features (e.g., sites) in sequence alignments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!