As a springboard to explore novel potent inhibitors of cholinesterase enzymes (AChE and BChE) responsible for causing Alzheimer disorder, the current study was conducted to synthesize pyrrole derived triazole based Schiff base scaffolds by facile synthetic route. These compounds were validated by HNMR, CNMR and HREI-MS. All these scaffolds (1-16) were examined for their inhibitory activity against AChE and BChE in contrast to Donepezil (10.20 ± 0.10 and 10.80 ± 0.20 µM) and Allanzanthone (12.40 ± 0.10 and 13.10 ± 0.10 µM). All pyrrole derived triazole based Schiff base scaffolds (1-16) showed varied range of inhibitory potentials against acetylcholinesterase and butyrylcholinesterase enzymes with lowest inhibition concentration values ranging from 5.10 ± 0.40-27.10 ± 0.10 µM (for AChE) and 5.60 ± 0.30-28.40 ± 0.30 µM (for BChE). SAR analysis of these derivatives revealed analog 7 as lead molecule against targeted enzyme, while analog 6 and 11 were ranked as second and third most potent scaffolds. Binding affinity and selectivity of potent molecules against targeted enzymes were examined by molecular docking and obtained results showed that potent molecule have versatile significant binding interactions with stated enzymes. Furthermore, safety profiles of potent analogues were predicted via ADMET protocols.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550546PMC
http://dx.doi.org/10.1186/s13065-024-01340-xDOI Listing

Publication Analysis

Top Keywords

ache bche
8
pyrrole derived
8
derived triazole
8
triazole based
8
based schiff
8
schiff base
8
base scaffolds
8
scaffolds 1-16
8
potent
5
novel pyrrole
4

Similar Publications

The current work represents a comparative study of the phenolic profiles of three under-explored (Boraginaceae) species from Greece- (OL), (OE), and (OG). Although spp. have ethnopharmacological significance, previous phytochemical studies have focused primarily on roots.

View Article and Find Full Text PDF

Hops ( L.) are widely recognized for their use in brewing, but they also possess significant pharmacological properties due to their rich bioactive compounds, with many varieties exhibiting diverse characteristics. This study investigates the chemical composition and biological activities of extracts from six hop varieties, focusing on quantifying xanthohumol and lupulone using High-Performance Liquid Chromatography (HPLC) and Total Phenolic Content (TPC) analysis.

View Article and Find Full Text PDF

Background: Sudden infant death syndrome (SIDS) is the leading cause of death among infants aged between one month and one year. Altered enzyme activities or expression of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) have been observed in SIDS patients that might lead to disturbed autonomic function and, together with other risk factors, might trigger SIDS. To explore the contribution of AChE and BChE from a genomic viewpoint, we sought to investigate the association between SIDS and selected single nucleotide polymorphisms (SNPs) in the and genes.

View Article and Find Full Text PDF

As a serine hydrolase synthesized by the liver, butyrylcholinesterase (BChE) is an important biomarker in the clinical diagnosis of liver diseases. To track BChE activity in drug-induced liver injury, we designed a deep-red BChE-activatable fluorescent probe (CYL-BChE) with hemi-cyanine structure by using a cyclopropyl carbonyl group as a specific recognition moiety. Its near-infrared absorption wavelength (665 nm) and emission wavelength (762 nm) provide excellent tissue penetration capabilities, making it suitable for biological imaging.

View Article and Find Full Text PDF

In this study, new cinnamic acid linked to triazole acetamide derivatives was synthesized and evaluated for anti-Alzheimer and anti-melanogenesis activities. The structural elucidation of all analogs was performed using different analytical techniques, including H-NMR, C-NMR, mass spectrometry, and IR spectroscopy. The synthesized compounds were assessed in vitro for their inhibitory activities against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!