Genome-wide identification and comparative gene-family analyses have commonly been performed to investigate species-specific evolution linked to various traits and molecular pathways. However, most previous studies have been limited to gene screening in a single reference genome, failing to account for the gene presence/absence variations (gPAVs) in a species. Here, we propose an innovative pangenome-based approach for gene-family analyses based on orthologous gene groups (OGGs). Using the basic helix-loop-helix (bHLH) transcription factor family in barley as an example, we identified 161-176 bHLHs in 20 barley genomes, which can be classified into 201 OGGs. These 201 OGGs were further classified into 140 core, 12 softcore, 29 shell, and 20 line-specific/cloud bHLHs, revealing the complete profile of bHLH genes in barley. Using a genome-scanning approach, we overcame the genome annotation bias and identified an average of 1.5 un-annotated core bHLHs per barley genome. We found that whole-genome/segmental duplicates are predominant mechanisms contributing to the expansion of most core/softcore bHLHs, whereas dispensable bHLHs are more likely to result from small-scale duplication events. Interestingly, we noticed that the dispensable bHLHs tend to be enriched in the specific subfamilies SF13, SF27, and SF28, implying the potentially biased expansion of specific bHLHs in barley. We found that 50% of the bHLHs contain at least 1 intact transposon element (TE) within the 2-kb upstream-to-downstream region. bHLHs with copy-number variations (CNVs) have 1.48 TEs on average, significantly more than core bHLHs without CNVs (1.36), supporting a potential role of TEs in bHLH expansion. Analyses of selection pressure showed that dispensable bHLHs have experienced clear relaxation of selection compared with core bHLHs, consistent with their conservation patterns. We also integrated the pangenome data with recently available barley pantranscriptome data from 5 tissues and discovered apparent transcriptional divergence within and across bHLH subfamilies. We conclude that pangenome-based gene-family analyses can better describe the previously untapped, genuine evolutionary status of bHLHs and provide novel insights into bHLH evolution in barley. We expect that this study will inspire similar analyses in many other gene families and species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xplc.2024.101190 | DOI Listing |
Plant Physiol
December 2024
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
Basic helix-loop-helix (bHLH) proteins comprise a large family of transcription factors that are involved in plant growth and development, as well as responses to various types of environmental stress. (birch) is a pioneer tree species in secondary forest that plays a key role in maintaining ecosystem stability and forest regeneration, but few bHLHs involved in abiotic stress responses have been unveiled in birch. In this study, nine BpbHLH TFs related to stress responses in the birch genome were identified.
View Article and Find Full Text PDFCell Rep
December 2024
Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA. Electronic address:
Stem cells integrate multiple environmental signals to activate appropriate fate programs. To ensure coherent responses, alternative fates must be concomitantly inactivated. However, mechanisms that coordinate fates in a signal-specific manner are not fully understood.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China.
Panax japonicus, an endangered species in China, is usually used as a traditional medicine with functions of hemostasis, pain relief, and detoxify. However, the seeds of P. japonicus are hard to germinate in natural conditions, and the molecular events and systematic changes occurring in seed germination are still largely unknown.
View Article and Find Full Text PDFPlant Commun
November 2024
Western Crop Genetic Alliance, Murdoch University, Murdoch, WA 6150, Australia; State Agricultural Biotechnology Centre (SABC), College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia; Department of Primary Industry and Regional Development, Government of Western Australia, South Perth, WA 6155, Australia; College of Agriculture, Shandong Agricultural University, TaiAn, China. Electronic address:
Genome-wide identification and comparative gene-family analyses have commonly been performed to investigate species-specific evolution linked to various traits and molecular pathways. However, most previous studies have been limited to gene screening in a single reference genome, failing to account for the gene presence/absence variations (gPAVs) in a species. Here, we propose an innovative pangenome-based approach for gene-family analyses based on orthologous gene groups (OGGs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!