A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Single-cell transcriptomic and cross-species comparison analyses reveal distinct molecular changes of porcine testes during puberty. | LitMetric

Single-cell transcriptomic and cross-species comparison analyses reveal distinct molecular changes of porcine testes during puberty.

Commun Biol

Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Published: November 2024

The pig is an important model for studying human diseases and is also a significant livestock species, yet its testicular development remains underexplored. Here, we employ single-cell RNA sequencing to characterize the transcriptomic landscapes across multiple developmental stages of Bama pig testes from fetal stage through infancy, puberty to adulthood, and made comparisons with those of humans and mice. We reveal an exceptionally early onset of porcine meiosis shortly after birth, and identify a distinct subtype of porcine spermatogonia resembling transcriptome state 0 spermatogonial stem cells identified in humans, which were previously thought to be primate specific. We also discover the persistent presence of proliferating progenitors for myoid cells in postnatal testes. The regulatory roles of Leydig cell steroidogenesis and estrogen synthesis in supporting cell lineages are also explored, including the potential impact of estrogen on Sertoli cell maturation and spermatogenesis. Overall, this study offers valuable insights into porcine testicular development, paving the way for future research in reproductive biology, advancements in agricultural breeding, and potential applications in translational medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550399PMC
http://dx.doi.org/10.1038/s42003-024-07163-9DOI Listing

Publication Analysis

Top Keywords

testicular development
8
single-cell transcriptomic
4
transcriptomic cross-species
4
cross-species comparison
4
comparison analyses
4
analyses reveal
4
reveal distinct
4
distinct molecular
4
molecular changes
4
porcine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!