Thin or ultra-thin dielectric layers have been widely used in various applications such as capacitors, piezo-electrics, and solar cells. This study explains the mechanism and chemistry of creating nano- and micron-sized openings in atomic-layer-deposited aluminum oxide-based dielectric layers using the alkali metal salt selenization technique. The necessary components for this mechanism are excess methyl groups present in the dielectric layer, supply of selenium and alkali metals, and a minimum annealing temperature. It is shown and explained that to create openings in the dielectric layer, heavier alkali halide metal salts require less energy, or - in other words - a lower annealing temperature. The overall hypothesis is explained via a thermodynamic approach with supportive thermochemical reactions. Thus, an easy way to engineer the dielectric layer to form openings at low temperatures is presented, beneficial for various applications like photovoltaics, optoelectronics, or micro-electro-mechanical systems (MEMS).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550380 | PMC |
http://dx.doi.org/10.1038/s41598-024-78919-w | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China.
For silicon-based devices using dielectric oxides doped with rare earth ions, their electroluminescence (EL) performance relies on the sufficient carrier injection. In this work, the atomic GaO layers are inserted within the Er-doped GeO nanofilms fabricated by atomic layer deposition (ALD). Both Ga(CH) and Ga(CH) could realize the ALD growth of GaO onto the as-deposited GeO nanofilm with unaffected deposition rates.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada. Electronic address:
Copper hexacyanoferrate (CuHCF) demonstrates high working voltage, convenient synthesis methods, and economic benefits. However, capacity decay of CuHCF//Zn full cells is usually observed in aqueous electrolytes due to the dissolution of Cu and Fe, as indicated by the irreversible insertion of Zn ions and the consequent formation of ZnCuHCF. To address these challenges, a cathode-oriented electrolyte engineering design employing a methyl acetate (MA) co-solvent with zinc triflate (Zn(OTf)) salt electrolyte is implemented.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China.
Plasmonic superlattices enable the precise manipulation of electromagnetic fields at the nanoscale. However, the optical properties of static lattices are dictated by their geometry and cannot be reconfigured. Here, we present a surface-interface engineered plasmonic superlattice with confined polyelectrolyte-functionalized metal-organic framework (MOF) hybrid layers to tune plasmon resonance for ultrafast chemical sensing.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China.
The increasing demand for mobile artificial intelligence applications has elevated edge computing to a prominent research area. Silicon materials, renowned for their excellent electrical properties, are extensively utilized in traditional electronic devices. However, the development of silicon materials for flexible neuromorphic computing devices encounters great challenges.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, 10032, USA.
Scientific bodies overseeing UV radiation protection recommend safety limits for exposure to ultraviolet radiation in the workplace based on published peer-reviewed data. To support this goal, a 3D model of the human cornea was used to assess the wavelength dependence of corneal damage induced by UV-C radiation. In the first set of experiments the models were exposed with or without simulated tears; at each wavelength (215-255 nm) cells with DNA dimers and their distribution within the epithelium were measured.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!