Saccharomyces cerevisiae L7 was found to be an excellent starter and biological deacidification strain for Suanyu, however, the underlying mechanisms remain poorly understood. This study aimed to investigate the acid inhibition mechanism of S. cerevisiae L7. The strain enhances the sensory and flavor characteristics of Suanyu. The growth of Lactiplantibacillus plantarum is inhibited due to competition for carbon sources, resulting in a decrease in cell count from 9.00 Lg CFU/mL at 48 h to 7.70 Lg CFU/mL in co-culture. The addition of yeast reduces acidity, decreasing it from 5.83 g/kg to 0.82 g/kg at 48 h, while increasing sugar utilization to 94.52%. We found that cell contact was the main method of inhibition between the two microbials. Transcriptome analysis revealed that multiple pathways were affected under co-culture, ultimately leading to a decrease in lactic acid production. These findings provide valuable insights into the microbial interactions involved in biological deacidification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550843 | PMC |
http://dx.doi.org/10.1038/s41538-024-00336-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!