Bone fracture healing is a complex physiological process influenced by biomechanical and biomolecular factors. Mechanical stability is crucial for successful healing, and disruptions can lead to delayed healing or nonunion. Bone commonly heals itself through secondary fracture healing, which is governed by the mechanical strain at the fracture site. To investigate these phenomena, a validated methodology for capturing the mechanoregulatory process in specimen-specific models of fracture healing could provide insight into the healing process. This study implemented a prognostic healing simulation framework to predict healing trajectories based on mechanical stimuli. Sixteen sheep were subjected to a 3 mm transverse tibial mid-shaft osteotomy, stabilized with a custom plate, and equipped with displacement transducer sensors to measure interfragmentary motion over 8 weeks. Computed tomography scans were used to create specimen-specific bone geometries for finite element analysis. Virtual mechanical testing was performed iteratively to calculate strains in the callus region, which guided tissue differentiation and consequently, healing. The predicted healing outcomes were compared to continuous in vivo sensor data, providing a unique validation data set. Healing times derived from the in vivo sensor and in silico sensor showed no significant differences, suggesting the potential for these predictive models to inform clinical assessments and improve nonunion risk evaluations. This study represents a crucial step towards establishing trustworthy computational models of bone healing and translating these to the preclinical and clinical setting, enhancing our understanding of fracture healing mechanisms. Clinical significance: Prognostic bone fracture healing simulation could assist in non-union diagnosis and prediction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.26007DOI Listing

Publication Analysis

Top Keywords

fracture healing
24
healing
15
bone fracture
12
prognostic bone
8
healing simulation
8
vivo sensor
8
fracture
7
bone
5
healing simulations
4
simulations ovine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!